

3. The throughput is relatively stable albeit stochastic variations due to the shared
network and compute environment on Bracewell.

6.2 ADIOS Storage Manager

Dr Wang implemented a drop-in storage manager using ADIOS for CasaCore, named
AdiosStMan, as a contraction of the ADIOS Storage Manager. AdiosStMan is designed
to be an alternative to any other Casacore Table Data Systems (CTDS) storage
managers. Any existing code using the CTDS system can work with AdiosStMan by
simply changing the definition of the storage manager to that of AdiosStMan,
provided that all CTDS features it uses are supported. These are listed in Table 5 and
the performance results in the next section are taken from [RO09].

Data types All supported except String/String Array

Column types Scalar columns and direct array columns supported Supported
Write Supported

Rewrite Not supported

Read Supported

Add rows Not supported

Add columns Not supported
Table 5: Shown is the list of CTDS features supported by the current version of AdiosStMan.

Parallel array write test

The parallel array writing test was configured to write a casacore table from
between 4 and 80 nodes, each node launching one MPI process. The table consists of
an array column, each column cell being a 36 MB floating-point array. The number
of rows of the table varies from 200 to 1000, which results in the table size varying
from 7.2 to 36 GB. In this test, AdiosStMan was configured to use the
MPI_AGGREGATE (previously called MPI_AMR) transport method (Liu et al., 2014) of
ADIOS, which provides a two-layer buffering mechanism to optimize operations for
small size data. The Lustre stripe size used in this test is 32. All testing results were
averaged from 20 runs.

As shown in Figure 33, AdiosStMan basically achieved a linear scale up on up to 80
compute nodes of Magnus, except for cases where the table does not contain enough
rows to boost the performance. The highest throughput we saw is approximately 10
GB/s on 80 nodes, for a 36 GB table consisting of 1000 rows. This number is close to
the ADIOS benchmark results.

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 51 of 66

12 I I T T ; ; !
NrRows=200 ; ; ;

—%k

e—e NrRows=400
101 4—a NrRows=600

@@ NrRows=800
. +—¢ NrRows=1000

Total throughput (GB/s)
=2

0 10 20 30 40 50 60 70 80
Number of Nodes / MPI Processes

Figure 33: AdiosStMan testing results for parallel array writing. Testing was configured to
write a casacore table from between 4 and 80 nodes on Magnus, each node launching one MPI
process. The table consists of an array column, each column cell being a 36 MB floating-point
array. The number of rows of the table varies from 200 to 1000, which results in the table size
varying from 7.2 to 36 GB.

In conclusion the AdiosStMan write test achieved close to the ADIOS benchmarks,
and offers a very clean solution for the write bottlenecks.

Parallel array read test

Testing was to read a single MeasurementSet table from between 1 and 50 nodes,
each node launching one process. All processes were launched at the same time
using mpirun. Each process reads the entire DATA column into its local memory,
which is approximately 45 GB.

A fundamental difference between parallel reading and parallel writing on the
Lustre filesystem is that for writing, data from different writers can usually be
scattered onto different object storage targets. This helps the overall throughput
more easily scale up linearly with the number of writers, or compute nodes.
However, for parallel reading, the files to read are already in place on some object
storage target, so all readers try to access the same object storage target at the same
time. Therefore, we do not find significant scalability of parallel reading compared
to parallel writing. Figure 34 shows that the overall throughput almost flattens out
after 20 compute nodes, whereas for parallel writing the processes scaled up nearly
linearly out to 80 nodes. ADIOS is mainly optimized for use cases where the number

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 52 of 66

of readers are identical or close to the number of writers. For example, when ADIOS
wrote the file to be read.

This meant that the advantages of ADIOS could not be exposed and the existing
alternative TiledShapeStMan (already highly optimised) CTDS application exceeded
the performance of AdioStMan. Nevertheless, for datasets where the storage is
optimally distributed, the potential ADIOS performance could be achieved. If this to
be achieved with real-life data it would have to be organised in this fashion. Tuning
the AdioStMan parameters should allow the matching of the default reader
application.

1600 " . . -
1400}
1200}
w
2 1000}
=
Q
S 800}
>
e
£
s 600}
=
400} -
200... ... [— Origina' MeaSurementSet .
: : e—e ADIOS MeasurementSet
o 1 1 L 1
0 10 20 30 40 50

Number of Nodes / MPI Processes

Figure 34: AdiosStMan testing results for parallel array reading. The total throughput is
measured in MB/s. Testing was schemed to read a MeasurementSet table from between 1 and 50
nodes, each node launching one MPI process. Each process reads the entire DATA column, which
is approximately 45 GB, into memory on a node independent of other processes.

In conclusion AdiosStMan currently performs 20% to 30% slower than
TiledShapeStMan, and the read test was not as fast as the default storage manager.
The reasons are understood and we have a road-map as to how to by-pass these
limitations.

6.3 Oskar2 Telescope Models and Simulations

OSKAR is a simulator for radio telescope visibility data. It was developed by SDP
collaborators at the Oxford e-Research Centre, UK. It was used together with DALiuGE
to generate test data sets based on realistic telescope models (Table 6). Also, the

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 53 of 66

project team worked together with Uni Oxford on a streaming capability to evaluate
the SPEAD data transport protocol (§6.1.2).

Configuration EPA AT AR AN ma | M

Stations 4 18 64 256 512 128
Baselines 6 153 2016 32640 130816 8128
max. Baseline (km) 4.8 5.5 35? 65? 65 5-10
Correlations/Dump |1.57E+06| 4.01E+07| 5.28E+08| 8.56E+09| 3.43E+10| 2.50E+07
Visibilities/s 14 MB 356 MB 4.7 GB 76 GB 304 GB 400 MB
2 min Snapshot Size | 1.67 GB 42.7 GB 562 GB 9.1 TB 36.5TB 47.9 GB

Table 6: Telescope models and data rates.

Furthermore, a number of telescope models and sky models were put together in
order to simulate visibility data (complex numbers) for various stages of the
SKA1_LOW rollout, starting from a Early Production Array (EPA) with just 4 stations
to the full array (AA4 release) of the full 512 station configuration.

Figure 35: Possible station configurations for array releases AA1 to AA4. See also Table 6.

The AA1 interferometer layout was modelled after option 1 of the roll-out plan [R13]
and includes 3 clusters (S8, S9, S10) consisting of 6 stations each. Each station consists
of 256 dipole antennas. All stations are assumed to have identical layouts. AA2 is an
extension of AA1 that includes one spiral arm for long baselines. The AA3 layout adds
128 stations to AA2. AA2 and AA3 are otherwise arbitrary subsets of the complete
SKA1_LOW layout. Finally, AA4 corresponds to the full SKA1_LOW deployment
(Figure 35).

Figure 36, which is also depicted on the cover page, shows the relative expected
improvement of the point spread function (PSF) and image quality during the rollout
stages of the construction phase. The imaged radio source Centaurus A was simulated
using a complex sky model with 23800 components.

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 54 of 66

Figure 36: Simulation of Cen A; top row f.Lt.r.: improving telescope PSF for EPA, and AA1 to
AA4; bottom row: relative improvement of image quality, i.e., UV coverage.

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 55 of 66

7. Data Challenge 2 - Design verification, Hw/Sw Co-Design

7.1 SPEAD Protocol - Lessons Learned

SPEAD is the chosen protocol for data transport from the radio correlator (CSP) to the
SDP facility. The behavior of SPEAD was tested by transferring simulated data. SPEAD
required a fair amount of monitoring and fine-tuning in terms of network
configuration and operating system tweaking before a good compromise between big
bandwidth and small data loss rates was found.

In the process a new TCP backend was added to the SPEAD code, which otherwise
defaults to a UDP backend. TCP provides built-in congestion control and guarantee of
delivery, which are desirable traits in many situations, at the expense of potential
bandwidth loss, which depends mainly on the roundtrip time of the link being used.
SPEAD benchmarks (Figure 35), for both UDP and TCP backends, utilized the 890 km
network link between Perth and the Murchison Radio Observatory site. This link to
the SKA precursors MWA and ASKAP has a bandwidth of 100 [Gb/s] and is obviously
an ideal SKA testbed.

60.0

40.0

Aggregated speed [Gb/s]

N
o
o
Aggregated loss [% of heaps]

0.0

Imposed UDP rate [Gb/s]

@ UDP speed @ UDP errorrate == TCP speed == Linear speed scaling

Figure 35: Comparison of TCP (yellow) and UDP speeds (blue); UDP error rate (red).

After clearing up some minor problems in our initial TCP implementation it is now
production ready. A SPEAD benchmarking exercise produced very interesting results.
It was possible to saturate just over 70% of the link capacity using SPEAD. Measuring
the loss rate of UDP streams as a function of speed showed that the new TCP
implementation performs equally well as lossless UDP streams. The code changes
were fed back to the SPEAD developers for inclusion in the master code branch. A
memo detailing the experiments and results has been submitted to the SDP
consortium [RO8].

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 56 of 66

7.2 Ingest Pipeline

The ingest pipeline reads input visibility data and metadata streams from the
correlator and telescope operating system respectively, and processes them into
standardised data sets, such as measurement sets, for further downstream processing
and analysis.

The system is implemented in a microservices architecture, with message streaming
for communication. The key reasons for this design decision are:

e The main quality requirement for the ingest stage of processing is the ability to
scale up to extremely high throughput. Whereas a batch-processing approach
would allow use of established components such as CASA tclean within the
(currently batch-oriented) DALiuGE execution framework, the latency cost of
collecting all visibilities before initiating further processing would be
prohibitive. A stream-processing approach will maximise throughput by
allowing data processing to commence with the reading of input data.

e It is important that the ingest pipeline be reliable and fault-tolerant. Further
downstream, if processing fails, there may be some margin of error within
which processing may be corrected and restarted, without necessarily leading
to data loss. But failure of the ingest pipeline, even for a few minutes, may lead
to dropped inputs and thus an incomplete observation. This suggests the need
for redundancy amongst processing nodes, and the ability to deploy nodes in
response to failure or latency issues. A microservices approach will facilitate
this.

e A microservices approach facilitates automatic deployment of services for
scaling and redundancy of the system, using container technologies such as
Docker.

e The ingest stage of processing is more rigidly defined than later image
processing stages. Whereas later stages of processing must support a range of
workflow configurations, depending on the science need, there are only a few
configurations of the ingest pipeline that would make sense. Thus the need for
a highly composable/configurable workflow that motivates the use of the
DALiuGE workflow engine is not so compelling for the ingest pipeline.
Nevertheless that need is present to some extent, and a microservices
approach will provide the required flexibility that a monolithic approach
would not. It will also leave open the possibility of integrating the ingest
pipeline into a future version of DALiuGE with streaming support.

The system is implemented as a collection of “Service Runners” that are deployed at
start-up but remain idle until they receive a message specifying a configuration for
the processing system. Each Runner then spins up their service with the required
configuration. Services then continue to run and process data until the Runner
receives a message specifying termination of the service.

Services communicate via an asynchronous publish-subscribe messaging system. A
single-host prototyping, a messaging system using host memory has been
implemented. For deployment across multiple hosts, a messaging system has been
implemented on top of ZeroMQ.

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 57 of 66

The minimum viable product contains services to:
e “stage in” a visibility data stream from the correlator; i.e. receive on an
external protocol in an external format, and convert into an internal format
e “stage in” a metadata stream from the telescope operating system
e align the visibility data stream with the metadata data stream, in order to
correctly associate visibility data with corresponding metadata
e calculate UVW for visibility data
e aggregate the data into a standardised data set such as a measurement set
e deliver the data set downstream for further processing
There are also services for configuration, monitoring and control.

7.3 Integration of ARL with DALiuGE

Integrating the SDP’s Algorithm Reference Library (ARL) software and DALiuGE is an
exercise of interest to the SDP consortium since it would enable using ARL algorithms
within the DALiuGE execution framework with ease, and directly evaluate and
compare its performance against other execution frameworks.

Instead of manually wrapping each of the functions contained in the ARL, we chose to
implement a generic Dask emulation layer (explained in detail below) that would be
useful not only to execute the ARL within DALiuGE, but other projects as well. To
achieve this we needed to implement two different pieces of functionality, one
building on top of the other.

The first building block we needed to implement was to offer built-in support for
wrapping arbitrary python functions and expose them as stateful application drops.
To this end DALiuGE ships now with a built-in application drop called PyFuncApp
which does exactly this. This new functionality enables users to construct Logical and
Physical graphs that make use of python functions directly, instead of having to call
functions in C/C++ dynamically linked libraries, or to execute external programs. The
function parameters are modeled as the inputs of the application drop, and the result
value(s) as the outputs. Given that input and output data in DALIuGE is modeled as a
stream of bytes, PyFuncApp applications interpret it as pickled objects, so they can
easily be transferred from one application to the other. In its current state it can
wrap complicated functions with user-defined types. One should note that support of
*args and **kwargs and other minor corner-cases is currently incomplete.

The second building block of this work sits on top of the PyFuncaApp support, and is
an emulation of the delayed function of the Dask framework. Dask is “a flexible
parallel computing library” that uses a dynamic task scheduling approach for
parallelizing computations. With Dask, a direct acyclic graph (DAG) of tasks is defined
using normal python code and some special Dask functions like delayed. The
application calls compute () on the final object that needs to be calculated, which
causes the DAG to be communicated to the Dask workers, who evaluate it and return
the result. The delayed function therefore acts locally as a way to construct the DAG,
correctly encapsulating a function, and its inputs and outputs.

In the case of DALIuGE, a delayed function has been added to the package d1g. This
function closely emulates Dask's delayed function. In this emulation, calls to
delayed progressively build a DALiuGE graph composed of instances of above
described PyFuncaApp Drop. Upon calling compute () on the final object to be
calculated, the Physical Graph is communicated to the DALiuGE Node Manager, which

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 58 of 66

executes it, and returns the result.

An implementation of these two parts is now present DALiuGE as of version 0.5.1,
which is readily available to install from PyPI. Simple ad-hoc tests have been
developed to ensure that the basic functionality of each of the pieces works, and
further tests have been successfully performed against some of the ARL routines.

A slight modification to ARL itself allows to make use of DALiuGE’s delayed function
such that toggling ARL between Dask and DALiuGE can be done through an
environment variable. Figure 36 shows an example of an ARL pipeline run in both
modes. The graph in both cases has a similar structure, and the pipeline output when
using either DALiuGE or Dask is exactly the same.

Given ongoing changes to ARL throughout this exercise, the proposed changes for it
have not been incorporated upstream. On the other hand our Dask emulation is
functional but incomplete. Depending on how much more emulation is required a
moderate amount of effort would be required to implement it.

ingest_visibility(..) ingest_visibility-#2

N\

l\
| zerovis-#1 '

predict_and_sum(...)

)

predict_and_sum-#4

b ingest_visibility-#0

ingest visibility(...)

Figure 36: An ARL pipeline execution using Dask (top) and DALiuGE (bottom). Both graphs were
generated using exactly the same code on the ARL, and produce the same result. Only an
environment variable makes the difference between using Dask (default behavior) and DALiuGE.
Corresponding parts of each graph are highlighted in different colors.

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 59 of 66

7.4 MWA Mirror: Large Scale Data Transfer

The MWA has captured and archived over 20 petabytes (PB) of radio astronomy data
within the Pawsey Centre, located in Perth Western Australia, over the last 4 years of
operations. The Pawsey Centre has not been provisioned as a general-purpose
processing centre for MWA user pipelines so it has been necessary to mirror parts of
the MWA archive to collaborators located all over the world. Archive mirroring is
necessary as the colocation of data and processing is the only practical way to reduce
the large volumes of data for a single observation in a reasonable timeframe. The
MWA project has mirrored approximately 4PB of MWA visibility data to archives
located in the United States, India, Italy, New Zealand and other parts of continental
Australia. The Next Generation Archive System (NGAS) is the software that ingests,
manages, mirrors and transfers MWA data to and from archives.

At its core NGAS is a HTTP based object storage system that can be deployed on either
single servers or in a globally distributed cluster. Some of its main features include,
but aren’t limited to:

Basic archiving and retrieval of data;

Data checking via various checksum methods;
Server-side data compression and filtering;
Automatic mirroring of data;

Clustering and swarming;

Disk tracking and offline data transfer; and
High customisation via user-provided plug-ins.

NGAS was designed to be dedicated to data flow management and archiving of files in
a globally distributed environment. It uses a subscription framework that allows
archive operators to specify what data files need to be archived (filtering), where to
push them (local or remote) and what protocols to use. The choice of protocol is
particularly important to take into consideration when transferring large amounts of
data over unreliable links, especially Wide Area Networks (WAN) where quality of
service metrics cannot be manipulated. In order to saturate a WAN, it has been
necessary to first find the bandwidth product delay? (BPD) of the link and then adjust
the necessary TCP windows sizes of the nodes on either side of the link to match. Once
they are matched to the BPD, it’s important to determine the optimal number of file
streams to run in parallel.

In the case of mirroring MWA data between Perth and MIT over the 1000Mb and
280ms link, the bandwidth product was first calculated: 1000 Mb/s x 0.280s / 8 = 35
MB. Once the TCP window adjustments were made, it was discovered that running 12
file streams in parallel maximised the throughput to ~750Mb/sec. This rate varied due
to congestion, mostly during business hours, as they were shared links. As a result of
the unpredictable nature of WANs and computer systems in general, NGAS employs a
queuing, retry and checksum validation scheme that ensures the data is delivered to
its destination without corruption regardless of the reliability of the link or the

2 bandwidth-delay product is the product of a data link's capacity (in bits per second)
and its round-trip delay time (in seconds)

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 60 of 66

operational state of the endpoints i.e. if nodes go offline for a period of time. It is in
this way that the software has been instrumental in the successfully delivery of large
amounts of MWA data around the world.

In order to reduce the footprint of the data produced by the instrument and therefore
the data transfer times, the MWA’s data capture software compresses the visibility
data using the Rice algorithm, which is a lossless compression technique, based on
Golomb coding®. Since its deployment, the algorithm has maintained an average
compression ratio of 3 i.e. the sum of raw data produced divided by sum of raw data
compressed. So the amount of resources required to store and transfer this data has
been reduced by a factor of 3 which translates directly into a saving of project time
and costs.

3 https://en.wikipedia.org/wiki/Golomb_coding

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 61 of 66

8. Data Challenge 3 - Interoperability and Portability

8.1 VOSpace - an IVOA Interface to Distributed Storage

ICRAR needed a VOSpace implementation in context of the MWA node of the All-Sky
Virtual Observatory (ASVO) project. This section reports on this parallel, separately
funded project.

A VOSpace is a distributed storage platform for astronomy data. Version 2.1 of the
VOSpace specification is being implemented which exposes a RESTful interface to the
software client.

Through a VOSpace a client can:
e add or delete data objects in a tree data structure;
e manipulate metadata for the data objects;
e and obtain URIs through which the content of the data objects can be accessed
(VOSpace V2.1, 2017).

Prior to ICRARs implementation of the VOSpace specification, an investigation was
undertaken to determine if there was a usable reference implementation available to
the astronomy community. The two implementations found were from the Canadian
Astronomy Data Centre (CADC) and Caltech.

The Caltech implementation was discounted due to failed tests and discontinued
support of the Python version. The CADC implementation was eventually discounted
because it is closely tied to CADC operational services and difficult to adapt to the
variety of platforms and storage mediums that ASVO entails. The CADC
implementation did get used, however, in the context of data modeling and
prototyping of the SDP science data product catalogue (§1.3.1).

The ICRAR VOSpace implementation is practically complete with the core functions
such as createNode, getNode, deleteNode, push and pull being fully complete and unit
tested. It will support a POSIX and S3 storage interface natively with a plugin
architecture that allows developers to implement a storage system that is not
currently supported i.e. Radio Astronomy Block Device (RABD), object store, Next
Generation Archive System (NGAS) etc.

The features that still require attention include:
S3 interface;

Ongoing test development;

Travis support; and

Operational verification and test plan.

The pyvospace software will be used in the Murchison Widefield Array (MWA) All-Sky
Virtual Observatory (ASVO) system as a core storage platform for the temporary
calibrated and uncalibrated visibility data sets. It is envisioned, at least in the short
term, that we have a common VOSpace running in the Pawsey Centre to service both
precursors, ASKAP and MWA. Having a shared common platform that includes a
VOSpace and TAP service (ICRARs pyvospace and CASDAs VO tools respectively)
reduces operational cost and technical risk across both projects.

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 62 of 66

The successful incorporation of the VOSpace into the MWA ASVO would result in a
federation of two core VO technologies. This is an important step as these types of
systems will be managing and servicing SKA and precursor data to the community.

8.2 Openstack Integration of DALiuGE on AlaSKA

Openstack is the infrastructure/OS deployment and management system of choice on
the SDP test cluster AlaSKA. For this reason it has become crucial to demonstrate
(prototype) DALiuGE deployed and operation as part of such an environment.

This work aims to address, to a confined extent, the risk Buffer hardware and
software (SDPRISK-363) does not meet performance requirements.

The SDP P3 (Performance Prototype Platform) cluster, aka AlaSKA, based in England,
was used as the platform to demonstrate the correct integration of DALiuGE.

The scripting language Ansible as well as OpenStack Heat to deploy bare metal OS
instances, configure them (as per the current norm for P3 CentOS 7 instances), then
install and run DALiuGE.

The successful integration of DALiuGE into the automated deployment system and
then configuring and running the product demonstrated successful integration.

Work is underway to integrate the SDP Algorithmic Reference Library into this
DALiuGE deployment paradigm and to enable comparative performance testing
across various test systems.

8.3 Characterisation of Workloads and Resource Capabilities

In order to be able to efficiently place and execute the potentially tens of millions of
individual tasks across thousands of computers we are employing schedulers, which
in turn use descriptions of the requirements of the tasks and the capabilities and
availability of the computers. Most of the currently used schedulers in high
performance computing leave it up to the user to specify what resources are required
to run the tasks and they also need to know the capabilities those resources have. For
example users need to specify that their job will need X cores and Y GB of memory. If
either of the two, or the combination of them can not find be satisfied, the job will
never run. In many cases this guesswork is neither optimal for the tasks nor for the
computers they are executed on. We have thus started to implement a system, which
is collecting many different metrics during the execution of the tasks and correlate
the measurements with exact timing information of the tasks themselves. The system
also measures and keeps information about the detailed capabilities of the computers.
When a new workflow is being scheduled this data will then be used to calculate an
optimised execution plan. During runtime of that new workflow new data will be
collected and combined with the existing measurements. This information can also be
used to detect issues with certain computers and trigger maintenance activities.

The current implementation consists of a collection of off-the-shelf products and a

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 63 of 66

custom DALiuGE event collector providing the start and stop times and unique
identifiers of the executed tasks. The metrics of the individual computers are
collected by a package called nodeexporter, which is part of the Prometheus
(https://prometheus.io) systems monitoring and alerting toolkit. nodeexporter can
collect up to about 50 different metrics and can thus provide a holistic view of what
happens on a machine over time. All the those metrics from all computers running
DALIiuGE are scraped by Prometheus time series databases running on the head node
of a data island. The custom DALiuGE event collector ingests the event timestamps
into a InfluxDB (https://www.influxdata.com) database. We are using two different
databases for three reasons. (1) The free version of InfluxDB does not include a
distributed deployment, but Prometheus does. In particular for the machine metrics,
where every machine is collecting about 40-50 metrics every second, scalability is a
concern®. (2) Prometheus is using a scraping model, which sets the timestamps of the
collected metrics to the timestamp of scraping. However, we need the exact
timestamps of when the events occur, which is the domain of an event database.
InfluxDB does directly support ingest of events, Prometheus only provides that
through a quite complicated interface. (3) We need to experiment with different
technologies and keep our options open.

Island 1 Island 2 Island N

-

s
Grafana |- + = * """ " . = . InfluxDB

— Node metrics
—— DALIUGE events
.. Queries

Figure 37: Schematic layout of the Workload Characterisation framework. Node metrics are
scraped from each node by Prometheus instances running on each of the islands head nodes
(yellow outline). DALIuGE events are sent to InfluxDB by a DALiuGE event listener running on

4 Keeping the full time resolution of a 6 hour SDP reduction run would result in about
2.5 billion measurements. DALiuGE events would be at least two orders of magnitude
less.

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 64 of 66

each of the island head nodes. The information is then collected by queries to Grafana
visualisation dashboards.

On the side of how to and what to describe in terms of resource capabilities we are
still in an early stage. Some of the data gathered from the nodeexporter can directly
be used, but some more advanced concepts might be required at a later stage. One
possibility would be to adopt the work done as part of the SWORD project
(http://theswo.sourceforge.net) and use that for both resource and software
description. SWORD seems to be inactive, but the model is publicly available and
provides a good starting point.

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 65 of 66

9.

Reference Documents

Reference

RO1

DALiuGE System Component and Connector View, SDP document number TBA

RO2

Wilkinson etal 2016, The FAIR Guiding Principles for scientific data
management and stewardship, Sci. Data, 3, 160018

RO3

Louys etal, Observation Data Model Core Components and its Implementation in
the Table Access Protocol, v1.1

R0O4

SDP Preservation Design, SKA-TEL-SDP-0000023

ROS5

Tasse etal 2018, Faceting for direction-dependent spectral deconvolution, A&A,
611, 87

RO6

Offringa etal 2014, WSCLEAN: a fast, generic wide-field imager for radio
astronomy, MNRAS, 444, 606

RO7

Rioja etal 2018, LEAP: Direction Dependent Ionospheric Calibration for Low
Frequencies, MNRAS in press

RO8

Tobar etal 2018, SDP Memo 046: Experiences with the SPEAD protocol, Memo
046

R09

Wang etal 2016, AdiosStMan: Parallelizing Casacore Table Data System using
Adaptive IO System, Astron. Comput., 16 (2016)

R10

Lyon etal 2017, SDP Memo 042: Data Model Summary for Pulsar/Transient
Search & Timing, Memo 042

R11

Preite Martinez etal 2018, The UCD1+ controlled vocabulary, v1.3

R12

Dowler etal 2015, IVOA DataLink, v1.0

R13

Hayes etal, 2016, Roll-out Plan for SKA1_LOW, SKA-TEL-AIV-4410001, rev. 5

R14

CSP to SDP NIP Data Rates & Data Models, ipython notebook v1.1

R15

Ratcliffe etal 2016, SKA1 LOW SDP - CSP Interface Control Document,
100-000000-002

R16

Ratcliffe etal 2016, SKA1 MID SDP - CSP Interface Control Document,
300-000000-002

R17

Lyon etal 2017, SDP Memo 040: SDP Memo 40: PSRFITS Overview for NIP, Memo
040

Document No: SDP Memo 079 Unrestricted
Revision: 1 Authors: A.Wicenec, J.C.Guzman et al
Release Date: 2018-10-08 Page 66 of 66

