

SKA1 SDP EXECUTION FRAMEWORKS PROTOTYPING REPORT

Document Number... SKA-TEL-SDP-0000117
Document Type.. REP
Revision.. 01
Authors...V. Allan, B.Nikolic, M. Farreras, T. Cornwell, R. Lyon
Date... 2018-10-31
Document Classification... UNRESTRICTED
Status... Released

Name Designation Affiliation Signature

Authored by:

Verity Allan
SDP

Configuration
Manager

University
of

Cambridge

Date:

Owned by:

Date:

Approved by:

Date:

Released by:

Paul Alexander
SDP Project

Lead

University
of

Cambridge

Date:

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 1 of 15

Verity Allan (Oct 24, 2018)
Verity Allan

Paul Alexander (Oct 25, 2018)
Paul Alexander

https://secure.na1.echosign.com/verifier?tx=CBJCHBCAABAADVT1GvLG0Uhu7psAkdGx8XSdd6aMdvuB
https://secure.na1.echosign.com/verifier?tx=CBJCHBCAABAADVT1GvLG0Uhu7psAkdGx8XSdd6aMdvuB

DOCUMENT HISTORY
Revision Date Of Issue Engineering Change

Number
Comments

01 2018-10-31 - Prepared as a report for SDP CDR

DOCUMENT SOFTWARE
 Package Version Filename

Word processor Google Docs SKA-TEL-SKO-0000000-01_GenDocTemplate

Block diagrams

Google docs
Add-ons

Cross Reference

Table of contents

 Used for figure & table numbering and references.

Used for heading numbering.

ORGANISATION DETAILS

Name SDP Consortium
Lead Organisation The Chancellor, Masters and Scholars of the

University of Cambridge
The Old Schools
Trinity Lane
Cambridge
CB1 ITN
United Kingdom

Website www.ska-sdp.org

© Copyright 2018 University of Cambridge

 This work is licensed under a ​Creative Commons Attribution 4.0 International License​.

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 2 of 15

https://chrome.google.com/webstore/detail/cross-reference/hknkaiempgninehdhkgekoeoilkapgob?utm_source=permalink
https://chrome.google.com/webstore/detail/table-of-contents/ickpeaanccmmabadbfiknbobkmkdnnaj?utm_source=permalink
http://creativecommons.org/licenses/by/4.0/

TABLE OF CONTENTS
1 Introduction 6

2 References 7

2.1 Applicable documents 7

2.2 Reference documents 7

3 Motivation and Scope 8

3.1 Architectural Impact 10

3.1.1 Architectural Decisions 10

3.2 Risks addressed 11

4 Important Results 11

4.1 Main achievements 11

4.2 Difficulties 13

5 Lessons Learned 14

5.1 Metadata Structures are a key part of the Design 14

5.2 Performance risks not completely reduced 14

5.3 Cross-disciplinary teams are essential 15

5.4 It is hard to communicate the architecture 15

5.5 Risks Associated with the component interface are substantially reduced 15

5.6 Risks Associated with the control interface are substantially reduced 15

6 Suggestions/Recommendations 15

LIST OF FIGURES
N/A 6

LIST OF TABLES
N/A

LIST OF ABBREVIATIONS

API Application Programming Interface

ARL Algorithm Reference Library

CASA Common Astronomy Software Applications

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 3 of 15

/h.tjh3npuybapg
/h.tjh3npuybapg
/h.2s8eyo1
/h.2s8eyo1
/h.17dp8vu
/h.17dp8vu
/h.3rdcrjn
/h.3rdcrjn
/h.4yvclfw7kr6s
/h.4yvclfw7kr6s
/h.d0prv3xn1kik
/h.d0prv3xn1kik
/h.oskzss36dh2l
/h.oskzss36dh2l
/h.wyc14i1kd4e7
/h.wyc14i1kd4e7
/h.jcyh401ye1un
/h.jcyh401ye1un
/h.4sz2ivi86x6
/h.4sz2ivi86x6
/h.t4hvhfq0dv4u
/h.t4hvhfq0dv4u
/h.i60viwp1hgei
/h.i60viwp1hgei
/h.u67qyxcaqt51
/h.u67qyxcaqt51
/h.3dvv7g7lf6u7
/h.3dvv7g7lf6u7
/h.w52j741fwfie
/h.w52j741fwfie
/h.iagkycfziad
/h.iagkycfziad
/h.s6ycofcibi3d
/h.s6ycofcibi3d
/h.xk7mixgcdjbg
/h.xk7mixgcdjbg

COTS Commercial Off The Shelf

CSD3 Cambridge Service for Data Driven Discovery

CUDA Nvidia-provided API for GPUs

DALiuGE Data Activated Liu Graph Engine

EF Execution Framework

GIL Global Interpreter Lock

GPU Graphics Processing Unit

HPC High Performance Computing

ICAL Iterative Self-Calibration pipeline

ICRAR International Centre for Radio Astronomy Research

JNI Java Native Interface

JVM Java Virtual Machine

MPI Message Passing Interface

PDR Preliminary Design Review

SDP Science Data Processor

SIP SDP Integration Prototype

SKA Square Kilometre Array

SWIG Simplified Wrapper and Interface Generator

TIMG A simple Imaging pipeline

TRL Technology Readiness Level

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 4 of 15

1 Introduction

The Execution Framework has, from the moment we considered its inclusion in the SDP design, been
a high priority for our prototyping work. This began as part of our “horizontal prototyping” work, and
was focussed particularly on to Execution Frameworks after the Preliminary Design Review (PDR)
and delta-PDR reviews indicated that the Execution Frameworks area contained considerable risks
for the SKA.

The Execution Framework module is an important part of the SDP Architecture [AD01]. It provides
the mechanism for executing pipelines at scale in the SDP, using data-parallel processing techniques.
The architecture has been designed to allow the SDP to use different execution frameworks (suited
to the pipeline being executed), while using common processing components. Some familiarity with
this aspect of the SDP Architecture is assumed in this document.

This work has been conducted by multiple teams across the SDP Consortium. The Horizontal
Prototyping team worked on using Swift/T [RD11]; the ICRAR team created DALiuGE, to develop a 1 2

radio-astronomy specific data-driven framework. (A full description of the DALiuGe prototyping can
be found in RD15, with results described in RD13, RD08. The COTS Execution Frameworks (COTS EF)
prototyping team was set up to reduce risks associated with the SDP architecture for Execution 3

Frameworks, Processing Components and Workflows, and to verify architectural decisions. The SDP
China team focussed their work on Apache Spark [RD23], which was identified at delta-PDR as a 4

leading candidate for prototyping [RD07]. Experiments with Dask were also carried out as part of
the development of the Algorithm Reference Library (ARL) [RD14, RD16]. For a fuller understanding
of our prototyping efforts, see the referenced memos and reports.

There are many existing pieces of software that can fit into the Execution Framework paradigm,
from Apache Spark to Swift/T to Dask, as well as DALiuGE. The work is heavily connected to the ARL
[RD18]; the COTS EF team have been using ARL components as the common processing components
in their StarPU prototyping. This interface work is complementary to the SDP Integration Prototype
(SIP)[RD17]; while the COTS EF team have been focussing on the interface between the Execution
Framework and the Processing Components, the SIP team have been focusing on the control and
queue interfaces, and have tested deploying workflows run by Apache Spark, MPI and Dask.

This report sets out why we investigated certain Execution Frameworks; it reports key lessons on
what we found; reports on the risks reduced or analysed by this work; and presents suggestions for
how to continue work on Execution Frameworks.

1 Steven Pickles, David Terrett, Brian McIlwrath
2 Andreas Wicenec, Chen Wu, Rodrigo Tobar, Markus Dolensky, V. Ogarko, David Pallot, Richard Dodson, Kevin
Vinsen
3 Bojan Nikolic, Fred Dulwich, Montse Farreras, Chris Hadjgergiou, Arjen Tamerus, Vlad Stolyarov, plus
contributions from Tim Cornwell and Peter Wortmann.
4 Feng Wang, Qiuhong ​Li, ​et al​.

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 5 of 15

2 References

2.1 Applicable documents

The following documents are applicable to the extent stated herein. In the event of conflict between
the contents of the applicable documents and this document, ​the applicable documents shall take
precedence.

[AD1] SKA-TEL-SDP-0000013, SDP Architecture, Rev 06
[AD2] SKA-TEL-SDP-0000052, SDP Risk Register, Rev 08

2.2 Reference documents

The following documents are referenced in this document. In the event of conflict between the
contents of the referenced documents and this document, ​this document​​ shall take precedence.

Reference Number Reference

[RD02] SKA-TEL-SDP-0000054 Rev 03 SDP Prototyping Report Overview

[RD04] Java Native Interface Specification
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.ht
ml

[RD05] SKA-TEL-SDP-0000130 SDP Memo 50: The Accelerator Support of Execution
Framework
http://ska-sdp.org/sites/default/files/attachments/sdp_memo-50_wf_signed
.pdf

[RD06] SKA-TEL-SDP-0000140 SDP Memo 034: Practical Distributed Data Processing
using SWIFT/T & CASA
http://ska-sdp.org/sites/default/files/attachments/2017-08-casaswift.pdf

[RD07] SKA-TEL-SDP-0000072 Can SDP Use Existing Big Data Systems?
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000072_01c_
rep_sdpmemobigdatasystems_-_signed.pdf

[RD08] SKA-TEL-SDP-0000174 SDP Memo 078: Scalability Testing using DALiuGE on
Tianhe-2 and Pawsey
http://ska-sdp.org/sites/default/files/attachments/sdp_memo_78_scalability
_testing_using_daliuge_v1.0.pdf

[RD09] SKA-TEL-SDP-0000082 SDP Memo: Data-Driven Architecture Prototyping
Report
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000082_c_re
p_sdpmemodatadrivenprototyping_-_signed.pdf

[RD10] SAK-TEL-SDP-0000083 SDP Memo Data Flow Prototyping Report
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000083_c_re
p_sdpmemodataflowprototyping_-_signed.pdf

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 6 of 15

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
http://ska-sdp.org/sites/default/files/attachments/sdp_memo-50_wf_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/sdp_memo-50_wf_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/2017-08-casaswift.pdf
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000072_01c_rep_sdpmemobigdatasystems_-_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000072_01c_rep_sdpmemobigdatasystems_-_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/sdp_memo_78_scalability_testing_using_daliuge_v1.0.pdf
http://ska-sdp.org/sites/default/files/attachments/sdp_memo_78_scalability_testing_using_daliuge_v1.0.pdf
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000082_c_rep_sdpmemodatadrivenprototyping_-_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000082_c_rep_sdpmemodatadrivenprototyping_-_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000083_c_rep_sdpmemodataflowprototyping_-_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000083_c_rep_sdpmemodataflowprototyping_-_signed.pdf

[RD11] SKA-TEL-SDP-0000085 SDP Memo: Horizontal Prototyping Report
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000085_c_re
p_sdpmemohorizontalprototyping_-_signed.pdf

[RD12] SKA-TEL-SDP-0000084 SDP Memo: MeerKAT Report
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000084_c_re
p_sdpmemomeerkatdataflow_-_signed.pdf

[RD13] SKA-TEL-SDP-0000159 SDP Memo 039: Full-Scale DALiuGE Data Simulation
and Reduction on Tianhe-2
http://ska-sdp.org/sites/default/files/attachments/sdp_memo_-_daliuge_sca
labilty_test_on_tianhe2.pdf

[RD14] SKA-TEL-SDP-00000150 SKA1 SDP Algorithm Reference Library (ARL)
Prototyping Report

[RD15] SKA-TEL-SDP-0000153 SKA1 SDP DALiuGE prototyping report

[RD16] SKA-TEL-SDP-0000177 SDP Memo 81 Combining Task-based Parallelism and
Platform Services within a Science Pipeline Prototype

[RD17] SKA-TEL-SDP-0000137 SKA1 SDP SIP prototyping report

[RD18] ARL Code
https://github.com/SKA-ScienceDataProcessor/algorithm-reference-library

[RD19] SKA-TEL-SDP-XXXXXX Pipeline Working Sets and Communication
http://ska-sdp.org/sites/default/files/attachments/pipeline-working-sets.pdf

[RD20] StarPU ​http://starpu.gforge.inria.fr/

[RD21] Protocol buffers
https://developers.google.com/protocol-buffers/docs/overview

[RD22] SKA-TEL-SDP-0000083 Evaluating Data Flow Execution Environments: Regent
and Legion as an example

[RD23] SKA-TEL-SDP-XXXXXX Evaluating and Investigating the Execution of an
Astronomical Pipeline on Spark

[RD24] http://matthewrocklin.com/blog/work/2017/07/03/scaling

[RD25] A Processing Pipeline for High Volume Pulsar Data Streams, R.J. Lyon ​et al​.
https://arxiv.org/abs/1810.06012

[RD26] https://cffi.readthedocs.io/

[RD27] SKA-TEL-SDP-0000148 SDP Memo 065: Fast Implementation of SKA Algorithm
Reference Library

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 7 of 15

http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000085_c_rep_sdpmemohorizontalprototyping_-_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000085_c_rep_sdpmemohorizontalprototyping_-_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000084_c_rep_sdpmemomeerkatdataflow_-_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000084_c_rep_sdpmemomeerkatdataflow_-_signed.pdf
http://ska-sdp.org/sites/default/files/attachments/sdp_memo_-_daliuge_scalabilty_test_on_tianhe2.pdf
http://ska-sdp.org/sites/default/files/attachments/sdp_memo_-_daliuge_scalabilty_test_on_tianhe2.pdf
https://github.com/SKA-ScienceDataProcessor/algorithm-reference-library
http://ska-sdp.org/sites/default/files/attachments/pipeline-working-sets.pdf
http://starpu.gforge.inria.fr/
https://developers.google.com/protocol-buffers/docs/overview
http://matthewrocklin.com/blog/work/2017/07/03/scaling
https://arxiv.org/abs/1810.06012
https://cffi.readthedocs.io/

3 Motivation and Scope

Execution Frameworks have different qualities and properties and no one existing framework yet
meets all SDP requirements - for example, implementation of calibration within a graph-based
representation is challenging in most frameworks.

Early goals:

● Prototype of COTS dataflow execution engine with COTS processing components
○ SWIFT/T used with CASA components on commodity Lustre cluster [RD11]

● Explore systems for running radio astronomy workflows in parallel
○ Legion/Regent - proposed as part of Industry consultation package, as its memory

mapping interface provides explicit programmer control of data placement, hence
allowing task assignment to processors to take into account data locality and
memory requirements. Prototyping found that the programming environment was
complex and not well documented, and prone to problems. Our technology
evaluation at delta-PDR found that these technologies were unlikely to yield good
results for the SDP [RD22].

○ Cloud Haskell
● Create a purpose-designed execution framework for radio astronomy

○ DALiuGE: DALiuGE - early work reported in [RD09]. Based on the version of our
architecture submitted at PDR. The overall SDP architecture has diverged from the
original concept; however, DALiuGE could be run as an Execution Framework using
the SDP execution control mechanism, as described in [AD01]. The more detailed
scope and evolution is described in [RD15]; only key results and findings will be
summarised here.

After delta-PDR, we reviewed the goals of our Execution Frameworks, and reconsidered the
Execution Frameworks we were targeting. Across the Consortium, we had:

● identified Spark as a candidate technology at delta-PDR;
● the opportunity to continue with exploring DALiuGE, including the potential to explore

DALiuGE at large scale;
● identified Dask as a framework in the official SKA programming language;
● been recommended StarPU by industry partners as the leading solution currently in

deployment;
● identified Apache Storm for real-time pipelines as a strongly supported streaming

framework;
● identified MPI as the currently best-supported HPC solution.
● We also intended to investigate reusing MeerKAT data processing software [RD12];

however, IP issues meant that we were unable to conduct any prototyping. 5

● created a new team to conduct prototyping in support of the architecture (the COTS EF
team), which focussed on prototyping interfaces to processing components, in order to
reduce risk.

Thus, the goals of the work to CDR were to:

● Explore the performance of existing frameworks:
○ Apache Spark
○ DALiuGE
○ Investigate accelerator support in Execution Frameworks[RD05]
○ Apache Storm for real-time pipelines [RD25]

5 The MeerKAT data processing system has evolved since the description presented in RD12.

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 8 of 15

● Interface frameworks to the SDP Control System (SIP)
● Interface frameworks to radio astronomy processing components, looking for component

reuse across frameworks, using the following frameworks:
○ Dask
○ StarPU
○ MPI

3.1 Architectural Impact

The key architectural decisions to verify were:

1. Verify that we can use task-based parallelism to quickly process SDP data
2. Verify that we can use the same components in multiple Execution Frameworks (using ARL

components)

Task-based parallelism alone has not previously been used (as far as we are aware) to process
astronomical data at scale. Either scripts have been used to iterate over a data set (e.g. frequency by
frequency), or, if the workflow has been parallelised (as has been done in ASKAPSoft), a message
passing MPI architecture has been used, relying on hard-scheduled and bulk-synchronous tasks. It is
a critical part of our architecture that a task-based parallel execution engine (where some of the
scheduling and data movement can be organised by the workflow) can be used for the vast majority
of pipelines workflows; hence, it was a high priority to verify our understanding that task-based
parallelism with some level of dynamic scheduling would be suitable for the SDP data processing
problem.

Because earlier prototyping suggested that current Execution Frameworks did not have all the
features that we need, we have not yet picked a single Execution Framework as the preferred
candidate. Indeed, we may never do so - the needs of the streaming real-time workflows are very
different from those of batch processing, so it is not unreasonable to expect to support two
different Execution Engines for the two different use cases. However, reimplementing all the
processing code for every supported Execution Framework would be a lot of work; hence we
architected reusable processing components. The aim of the Execution Frameworks interface
prototyping has been focused on demonstrating that it is possible to define a single set of
components with associated interfaces that can be practically used from multiple execution engines
without large additional software engineering effort.

3.1.1 Architectural Decisions

We needed a wrapper interface that was callable from a wide variety of programming languages (i.e.
from the languages used by the Execution Framework). C is easily callable from C, C++, Java and
Python, and hence is easily callable from Execution Frameworks using those languages.
The C API is callable from other languages, such as Haskell and Swift/T (which were explored in
earlier prototyping efforts), as C is a very portable language. Thus using C as the wrapper code
allows portability across many potential future execution frameworks.
It would also be possible to write all the components in C; however, it is not clear that this is
required for all components. While some high-performance components may need to use C for the
performance speed-ups, some components will be written to run on GPUs and hence use CUDA (or
similar), and there may be utility code written in Python (which is the official programming language

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 9 of 15

of the SKA). Thus writing a C wrapper has advantages for calling processing components from other
languages, and also does not force a decision about what language processing components should
be written in. This decision should be reviewed in the light of lessons learnt (Section 4).

3.2 Risks addressed

Risks being addressed [AD02]:

● SDPRISK-390: Execution Framework is immature at production
○ Exposure was: Extreme; Residual Exposure is: Low
○ We will be using Set-based design in construction to reduce risk associated with a

low TRL 6

○ The DALiuGE, Dask, and Spark prototyping has given us more confidence in our
architectural decisions in this area, and that there will be a solution available, even if
it is not achieving optimal performance. [RD14, RD15, RD23]

● SDPRISK-361: Logical Graph to Physical Graph translation in the baseline SDP Architecture
○ Exposure: High, Residual Exposure is: None.
○ Mitigated by DALiuGE scaling tests [RD13, RD08], and by testing multiple Execution

Frameworks, some of which use some level of dynamic scheduling.
● SDPRISK-343: Incomplete Interface Description between pipelines components & Execution

Framework
○ Exposure was: Extreme; Residual Exposure is: Medium
○ This is the main risk that COTS EF prototyping worked to reduce. The ARL now

provides good separation between pipelines components and workflow
components; a route to providing a fully generic interface to workflow components
in Python and C is proposed.

● SDPRISK-344: Data rate between nodes is underestimated
○ Exposure was: High; Residual Exposure is: Medium
○ The Execution Framework prototyping was not intended specifically to reduce this

risk; however, we would expect to uncover any remaining high risks in this area in
our prototyping once the prototype is advanced enough and we have conducted
large-scale tests. Some modelling of this has been undertaken by other members of
the consortium. [RD19].

4 Important Results

4.1 Main achievements

● The ARL was successfully used as a reference library, with components used in Dask and
StarPU pipelines:

The ARL is being used as a library of components, which can be used in different
pipelines. This validates the architectural decision that we can use the same
components in multiple execution frameworks, albeit so far only for a simple
workflow. These components have been wrapped, as per our architecture, and as
described below. (The components were used unwrapped in Dask, as Dask was able
to access the processing components directly.) The ARL now provides “a coherent

6 Set-Based Design “is a practice that keeps requirements and esign options flexible for as long as possible
during the development process… SBD… explores multiple options, eliminating poorer choices over time.”
https://www.scaledagileframework.com/set-based-design/

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 10 of 15

https://www.scaledagileframework.com/set-based-design/

set of data models and application programming interfaces (APIs) for state-free
functions”[RD-14]. This helps address SDPRISK-343.

● A C API to ARL was implemented for a number of components and functions in ARL:
The processing components wrapper code was written in C and Python​/libcffi

[RD26]​.
We have wrapped a simple pipeline (TIMG), and we have run the TIMG pipeline in 7

the C-based Execution Framework StarPU. This practical demonstration has
substantially reduced the risks associated with the interface between pipelines
components and Execution Frameworks. We have also wrapped some components
used in part of the ICAL pipeline. This also helps address SDPRISK-343. The code is
available in RD-18, in ​algorithm-reference-library/ffiwrappers​.

● A Java interface to ARL was implement for a small subset of the ARL components and
functions:

○ This was implemented through a SWIG auto-generated JNI wrapper which binds to
the ARL C-api described above.

○ It was verified by a simple serial Java program.
○ It uses the C API previously defined to interface to ARL components, which are then

called through the C wrappers by the JNI (Java Native Interface) [RD04]. The JNI
allows the Java Virtual Machine (JVM) to call routines in other languages (in this
case, C). We have tested this with a simple Java program. This should allow
Java-based Execution Engines such as Apache Spark to call the C-wrapped ARL
functions. Thus we have shown that the C bindings can be called from any
reasonable Execution Framework, as expected. However, we have not done
sufficient prototyping to uncover any issues with this. The code implementing this is
in RD-18; in ​algorithm-reference-library/ffiwrappers/java​. Again, this
reduces SDPRISK-343.

● We have used ARL + Dask to run the ICAL pipeline, one of our most complex workflows
[AD01, Imaging Workflow View, ICAL Workflow View]. This substantially reduces risks
associated with running real astronomy workflows. [RD-14]

● DALiuGE has been run in an HPC environment with ~10 million tasks, whilst providing
visualisation of progress. [RD08] This demonstrates scaling of DALiuGE in terms of overhead
(>0.1ms for >0.25m drops). Its performance is comparable to MPI. This reduced
SDPRISK-390.

● DALiuGE has successfully tested streaming data modes to support the Receive function of
the Ingest pipeline [RD08].

● To look at supporting efficient processing components, the GPU support provided by
different frameworks was investigated. It is possible to make DALiuGe and Spark support
GPUs, but this is not natively available [RD05]. StarPU does provide native GPU support
[RD20], so there are options available.

● Spark scaling tests were conducted on the ICAL pipeline. Initial memory issues were
somewhat alleviated by using Alluxio to deal with the negative effects of Spark shuffles
[RD-23]. PySpark tests in SIP incurred a large overhead because of the extra serialisation
required to get the data into the JVM [RD-17].

● As a test of the streaming workflows, Rob Lyon and the Manchester team have a prototype
of Pulsar Search via Data Stream Processing. Thus, we have successfully built and tested a
prototype pulsar search pipeline using Apache Storm. This aimed to: i) establish the
feasibility of processing pulsar data in real-time (or close to), ii) establish if there are any
pipeline issues relevant for SDP, iii) produce optimised versions of pulsar search algorithms
that could be deployed if necessary, iv) understand the computational requirements of a

7 This is a very simple imaging pipeline, with a very simple data distribution.

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 11 of 15

minimal, yet viable pulsar search workflow deployed using COTS tools, and v) determine
which areas of the search pipeline are trivially parallelisable and which are not. The overall
results achieved by the prototype were promising. It obtained 81% pulsar recall, and an
overall filtering accuracy of 99%. This has not yet been integrated with the SDP control
mechanisms. However, this does show the use of a streaming framework for SDP is feasible.
[RD25]

● Dask has been run at moderate scale (~137,000 tasks on 500 workers on a single node; 80GB
working set for image size ~1GB) [RD-14]. Further tests before CDR closeout are planned.

● Dask graphs have also been created and then run in DALiuGE, showing the interoperability of
the Python-based frameworks [RD-15].

● The SDP has worked with frameworks of acceptable maturity: both Spark and Dask, have
acceptable or good communities surrounding them, thus reducing SDPRISK-390.

4.2 Difficulties

● Neither the current architecture documentation nor the way we explained the architecture

was sufficiently clear and concise for members of the COTS EF team to understand enough
to be able to work on the prototyping. We only made progress by a number of iterations of
refactoring the ARL [RD14] which then demonstrated the module architecture to team
members in a way they could understand.
Two of the most difficult architectural concepts were: the distinction between workflows,
wrappers and processing components; and: the granularity of processing components.
Firstly, we had processing components that could modify the processing graph, by extending
it. While that is compatible with Execution Frameworks such as Dask, it is not compatible
with StarPU or Spark, which do not admit such modification of the graph. (StarPU, for
instance, needs to know all dependencies of a task before running it, which means that you
cannot modify or extend the graph during processing, as this would destroy its
understanding of the dependencies.)
There were then further issues with the granularity and level of processing components. In
initial prototypes, we had processing components which could call other processing
components, without modifying the graph. While that made them superficially more
compatible with other Execution Frameworks, we found that these meta-components made
it very easy to write a serial workflow, but very hard to expose the parallelism inherent in
the problem, upon which we rely. This made it hard to then write the code in the Execution
Framework, as it was not clear where the parallelism or data dependencies were to be
found.

● There was a steep software engineering curve for new members of the COTS EF team, with
some important technicalities only understood by a few members of the team (examples are
the Python Global Interpreter Lock (GIL) and dynamic closures generated using​ libcffi​).

● We encountered a number of defects in critical Python modules (​cffi and SciPy) related to
multi-threading, which required debugging by the technical lead as no other members had
experience in Python-source-code level debugging. The first defect (in ​cffi​) was present
only in a specific range of versions which we used, illustrating the need for a strictly
reproducible yet easily varied execution environment.

● We have significant issues dealing with the metadata for processing, owing to the
differences between Python and C. Python has in-built support for highly dynamic typing and
data organisation which does not exist in C. For these reasons, the COTS EF team resorted to
using Serialization to pass some metadata between different processing components.
For example:
dict (a dictionary, a mappable object in Python) allows one to create a data object whose
size can be altered during processing. In C, however, such objects can not be handled by

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 12 of 15

language-level constructs, but must be done through use of complex function calls and
conventions that must be followed, making the source code unapproachable to
inexperienced C programmers and making it hard to write error-free code
The current work-around in the APIs is difficult to maintain and unworkable in long term. It is
possible that using protocol buffers may provide a better interface for serialising structured
data, if we wish to continue to support using Python components in any Execution
Framework [RD21].

● PySpark has limitations - one can’t access the full functionality of Spark when using it, as it
lags behind Scala (the native Spark language), so one advantage of Spark (the Python
interface) is negated by the loss of functionality.

● StarPU requires writing C functions in a particular way, so that StarPU can recognise and
manage the dependencies. When using the StarPU standard C API, all C functions that
should run as tasks must adhere to a particular structure (in which your function may only be
passed two parameters: an array with your parameters for the task, and a StarPU internal
construct which contains control data including data dependencies. In addition, a codelet
must be defined with the input and outputs of the function defined. The codelet in addition
supports implementation of the same kernel for different architectures (i.e. CUDA or x86).
Finally, one must define whether data is a copy, or whether it is a pointer, as this allows
StarPU to automatically compute the data dependencies. None of this is immediately natural
for a C programmer; if GCC plug-in support is available, StarPU defines a C extension to make
it easier to write StarPU code, however we would be depending on a particular tool chain so
we chose to prototype with the standard C API.

● Dask may have overhead issues - the scheduler seems to slow down at ~256 workers, which
would not guarantee reaching the scale required for SKA-1, but which would provide
adequate support for early Construction [RD24]. Dask may also not manage to meet the
tasks/second requirements for the largest workflows in SKA-1. [RD-14]

● Early experiments with Spark had serious memory issues, which required a lot of effort to
overcome. Even then, Spark was unable to reach 1% of SKA scale for the ICAL pipeline
[RD23].

● Similarly, Dask had memory issues [RD16], though these could be partially mitigated by
causing the graph to do more serial work on the same data. It is not clear whether the
memory issues seen in Spark and Dask are specific to the Execution Frameworks in question,
or a more general problem for Execution Frameworks.

● In most cases, extra effort was required to prepare programs for use in an HPC environment.
This can be seen in the early CASA+Swift/T issues [RD11], running Dask on HPC [RD-14], and
the modifications required to run DALiuGE on Tianhe-2 [RD-13].

● The SWIFT/T prototyping shows that it is possible to have a modular, easy to read, language
with pure dataflow semantics which looks familiar even to astronomers [RD-06].

● Most current COTS execution frameworks are unable to deal with repeatable failures of
tasks and often they can not deal with even intermittent failures.

5 Lessons Learned

5.1 Metadata structures are a key part of the design

This finding emerged from the COTS EF prototyping; it was not an issue that we had considered
when architecting the Execution Frameworks and Processing Components. However, setting stable
metadata constructs (which contain stable data objects - no ​dict​s) for data objects allows us to

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 13 of 15

move between languages with and without explicit memory management, which allows us to use
multiple Execution Frameworks. However, this is not a natural mode of programming in Python.

5.2 Performance risks not completely reduced

Initially, the SDP were concerned about the performance of an Execution Framework. However,
ICRAR and the SDP China group have conducted high performance tests of Spark and DALiuGE, and
there have been more limited tests of Dask using the ARL. While high-performance processing
components have been tested, they have not been tested in Execution Frameworks [RD27]. We
would still like to do more high performance prototyping, to explore the limits of currently available
Execution Frameworks, and the overheads imposed by wrapped components, either before CDR
closeout, or during Bridging.

Pulsar search best done with batch processing

Pulsar search is best undertaken using batch processing where possible, as it is simpler to implement
and for pulsar search, this permits fundamentally higher levels of filtering accuracy [RD-25].

5.3 Cross-disciplinary teams are essential

As we saw in our Swift/T prototyping ([RD06][RD11]), execution frameworks prototyping relies
heavily on having cross-disciplinary teams, covering computational radio astronomy and high
performance parallel computing. In particular, having radio astronomers who understand the key
algorithms used in processing, and how/whether they can be parallelised is essential to make
substantial progress with Execution Frameworks coding. HPC experts are also helpful, as running
workflows on HPC systems is also a considerable coding effort. The SAFe process that will be used in
SKA Construction should allow the creation of appropriate teams, and thus ensure that progress is
not blocked by lack of appropriate expertise.

5.4 It is hard to communicate the architecture

One of the persistent issues we uncovered during prototyping was that people were frequently
misunderstanding the architecture and finding it difficult to apply the architecture to the
programming problem in front of them. It tended to require frequent small group meetings to
communicate the essential concepts. This also led to the issues noted above with defining what
exactly a processing component is, and hence where the interface to that component is defined. This
has obvious implications for getting new staff on the project up to speed - we estimate that it will be
around 6 months before most people will be capable of making a substantial contribution to the
Execution Frameworks area, although the example code we now have should help a little with this.
There is also now more comprehensive architecture documentation, with better coverage of this
area. However, we still note that this difficulty should be factored in to SKA planning in construction
and operations.

5.5 Risks Associated with the component interface are substantially reduced

By defining a C API to the ARL components, and using that C interface to run ARL components in
another Execution Framework, the risk associated with the interface has been substantially reduced.
We have shown that this is architecturally feasible for a simple workflow, and have a working
prototype. However, we have also shown that agreeing the level at which that interface operates is

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 14 of 15

very important. In order to support composition by the workflows, processing components must be
very low level; any composition must happen at the workflow level. Having a working prototype
should make understanding this easier in future.

5.6 Risks Associated with the control interface are substantially reduced

This was demonstrated by the work undertaken by SIP, using P3-AlaSKA [RD17].

6 Suggestions/Recommendations

● Proceed with Python-based frameworks.

○ This allows use of C or Python pipeline components, and makes the metadata issues
easier.

○ Python is the official SKA programming language, so this may make staff recruitment
and code maintenance easier

○ The frameworks tests so far show acceptable performance; if processing
components become the bottleneck, we can investigate replacing parts of the ARL
with Numba code. [RD-14]

○ However, this leaves it unclear what to do about real-time processing (for Receive,
Real-Time Calibration and Real-Time Imaging for Slow Transients, all of which have
stringent performance requirements described in AD01), as we have not conducted
much testing in these areas.

○ We recommend that large scale tests be carried out with e.g. CSD3
● We believe we can proceed with any or all of DALiuGE, MPI, and Dask. There are pros and

cons to all of these:
○ DALiuGE - has been shown at scale, but needs to be entirely maintained by SKA.

Real-time processing has not been investigated beyond testing the Receive portion
of the Ingest pipeline.

○ Dask - has wider adoption, but has some scaling issues [rd24], and again, streaming
has not been investigated.

○ MPI - ​mpi4py has very wide adoption, but it is a lot of effort to write pipelines as all
the dependencies/communications have to be managed by hand.

● In order to allow for using any Execution Framework with Python components (e.g.from the
ARL), work will need to continue on the Processing Component interface, looking at Protocol
Buffers.

Document No: SKA-TEL-SDP-0000117 Unrestricted
Revision: 01 Author: V. Allan ​et al​.
Release Date: 2018-10-31 Page 15 of 15

		2018-10-25T06:03:56-0700
	Agreement certified by Adobe Sign

