

SDP Memo 037: IO and Storage Software

Document number…………………………………………………………………SDP Memo 37
Document Type…………………………………………………………………………….MEMO
Revision………………………………………………………………………………..
Author……………………………………………………………………………….Peter J. Braam
Release Date………………………………………………………….2017-12-20
Document Classification…………………………………………………. Unrestricted

Lead Author Designation Affiliation

Peter J Braam

Signature & Date:

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 1 of 15

Peter J Braam (Apr 29, 2018)
Peter J Braam

https://secure.na1.echosign.com/verifier?tx=CBJCHBCAABAAZf7AkeTSOSnWxufIJLoJY1fyhZ8MMCPk

SDP Memo Disclaimer

The SDP memos are designed to allow the quick recording of investigations and research
done by members of the SDP. They are also designed to raise questions about parts of the
SDP design or SDP process. The contents of a memo may be the opinion of the author, not
the whole of the SDP.

Table of Contents

SDP Memo Disclaimer

Table of Contents

List of Figures

List of Tables

List of Abbreviations

Introduction

References
Reference Documents

Storage Tiers
Economic Models for IO Tier Selection
Tiering Software

Implementations and Functionality
The Campaign Storage Approach

IO Libraries to Improve Performance
Optimizations in Cluster File Systems
Aggregation and alignment
Metadata Interactions
Non-implemented IO optimizations

Staging

The structure of future IO software for scientific computing
The Future IO Application Interface
The Storage Layer

Risk Avoidance for SDP Storage and IO
Scope
Implementation Choices
Critical Design Review for IO architecture

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 2 of 15

/h.28sbyet6b58z
/h.h1emhev716yu
/h.ftwniqfxvi5a
/h.2771pj0dwgr
/h.w4tqx6wjmtfq
/h.p8x65y87pvo3
/h.2ddbnkc5ifwx
/h.ugo56h3i8nud
/h.lg43mwq45ctw
/h.esb1yb3q7qa7
/h.2alyjec6rvjw
/h.oo6j9x8wiufh
/h.kiqdrc9cobkg
/h.nolezwwwdg6e
/h.oqvk39q35mzt
/h.5w5nnooau1s
/h.41yw30pv6wlh
/h.lljadmexavns
/h.qz2kfi1n0mfd
/h.b31vkge690a8
/h.jag4ngqo3lgo
/h.pdtab0dn3nyj
/h.89nyf9qs85gz
/h.ww0zis3o3sgt
/h.nyhdelfbwnhp
/h.juhoxmfqas00

List of Figures

Figure 1: Faster and slower tiers interacting with containers.
Figure 2: Campaign Storage Deployment
Figure 3: Data Layout - false sharing and protocol inefficiency
Figure 4: module decomposition of future IO stacks

List of Tables

Table 1: Recommendations
Table 2: Tier bandwidth and capacity pricing

List of Abbreviations

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 3 of 15

Introduction

This document provides an overview, specifically at the time of writing - Q1 2018 - of
expected developments in storage and IO software and best practices for IO software
implementation, as they may be relevant to the SKA SDP. Several themes shape the
document:

1. A proliferation of new storage and memory technologies necessitates re-working
basic technologies, such as the lowest levels of storage software, and handling
multiple tiers in the storage software stack. Products have barely started to reach the
market, and there is presently very little industrial activity for HPC IO.

2. Cloud storage systems pose high promise for scalability, but have not yet been
proven effective for the highly bursty and concurrent HPC IO patterns, likely to also
be seen in the SDP.

3. Addressing application IO performance problems with specific software choices, and
the structure of future HPC storage software, with a perspective on the role of cloud
storage software.

This memo is organized in the following sections:
1. A review of storage tiers
2. Historical overview of addressing IO problems with software
3. Structure of new storage software stacks.
4. Recommendations for reducing risk.

For easy reference we include in the table summarizing the recommendations in this memo.

Area Observation

Solution Identification This memo makes no recommendation of any specific product.
Vendors will deliver systems with integrated storage solutions.
Few new choices, if any, are presently becoming available, and it
will be necessary to observe the market for several more years.

Node local storage Has always been and will likely remain vastly superior to any
form of shared networked storage for performance.

Cloud Storage SW Normal concurrent, bursty HPC loads are insufficiently tested.
Excellent scalability with custom SW development. File systems
over objects defeat the purpose. High promise, much uninformed
discussion.

Container volumes
served from network
file system

Excellent performance and most manageability from networked
FS. No node to node synchronization.

Economic models Refine from mere capacity prices.

Metadata A strongly coherent directory, regardless of its implementation,
poses major threats to scalability. Such directories can often be

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 4 of 15

avoided when entry names can be computed instead of
retrieved. A decentralized metadata system with weak
coherency (Dropbox being an example) can have excellent
scalability.

Directory sizes commonly become problematic when they
exceed 10M entries. There is little or no experience with more
than a few 100 file system mount points in the directory tree.

Exa-scale FS selection Lustre’s Dominance may not change for a significant time period.

General Level of risk
with Storage Software
is High

Both read and write rates envisaged for SDP are record breaking
numbers, which likely can only be achieved after overcoming
significant difficulties.

Implementation
approach

1. All IO is performed exclusively through a customized IO
library. In the case of SDP this library will facilitate the
layout of critical data (visiblities, image grids etc).

2. IO benchmarks, not burdened by compute operations,
are available to tune and adjust the IO library. Adjusting
IO using real applications is severely hindered by the fact
that IO usually merely consumes a single digit
percentage of the runtime, while more than 90% is spent
in computing operations.

Steps for Review and
Risk Mitigation

To review an approach to IO validate:
1. Proper alignment with RAID, partition and device

boundaries to minimize protocol overhead and eliminates
false sharing.

2. Aggregation to enable reasonable IO transfer sizes,
which can deliver a high percentage of hardware
capabilities.

3. Collections of files or objects can be created, traversed
and deleted with adequate speed, and file system
directories with many entries (e.g. >100K) are avoided.

4. Scalability w.r.t. to the number of nodes is proven.
5. The data network and data distributed allow full and even

utilization of all network links.
6. Data is cached or staged for optimal re-use.
7. Small all-to-all data exchanges leverage specialized

staging software.

Table 1: Recommendations

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 5 of 15

References

Reference Documents

Reference Number Reference

 DAOS high level design
https://wiki.hpdd.intel.com/display/DC/Resources
https://github.com/daos-stack

 HDF5 group
https://www.hdfgroup.org/solutions/hdf5/

 ADIOS
https://dl.acm.org/citation.cfm?id=1551618​ (or see
http://www.lofstead.org/) and
https://www.olcf.ornl.gov/center-projects/adios/

 Campaign Storage
http://storageconference.us/2017/Papers/CampaignStorage.pdf
http://www.lanl.gov/newsroom/video/video-stories/supercomputing-stor
age.php
https://www.snia.org/sites/default/files/SDC/2016/presentations/keynote
_general/Gary_Grider_MarFS_Scalable_Near-POSIX_File_System_ov
er_Cloud_Objects_HPC_Cool_Storage.pdf

 DOE Exascale RFP -
http://procurement.ornl.gov/rfp/CORAL2/

Storage Tiers

Storage systems in recent years are seeing an increasing number of hardware ​tiers.
Different tiers generally leverage different hardware, and are characterised by different price
and performance characteristics. The ranges of performance and pricing variations are
extreme as indicated in table 1.

 HBM RAM NVM Flash Disk Tape

$ cost / GB 0.3-3x
RAM

10 ?? 0.2 0.02 0.01

$ cost / GB/s 0.3-3 10 ?? 500 2,000 10,000

capacity TB/ 0.1 1 5 30 1,000 many PB

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 6 of 15

https://wiki.hpdd.intel.com/display/DC/Resources
https://github.com/daos-stack
https://www.hdfgroup.org/solutions/hdf5/
https://dl.acm.org/citation.cfm?id=1551618
https://www.olcf.ornl.gov/center-projects/adios/
http://storageconference.us/2017/Papers/CampaignStorage.pdf
http://www.lanl.gov/newsroom/video/video-stories/supercomputing-storage.php
http://www.lanl.gov/newsroom/video/video-stories/supercomputing-storage.php
https://www.snia.org/sites/default/files/SDC/2016/presentations/keynote_general/Gary_Grider_MarFS_Scalable_Near-POSIX_File_System_over_Cloud_Objects_HPC_Cool_Storage.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/keynote_general/Gary_Grider_MarFS_Scalable_Near-POSIX_File_System_over_Cloud_Objects_HPC_Cool_Storage.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/keynote_general/Gary_Grider_MarFS_Scalable_Near-POSIX_File_System_over_Cloud_Objects_HPC_Cool_Storage.pdf
http://procurement.ornl.gov/rfp/CORAL2/

node

read BW / node 750/4
modules

60/4 dimms 50/4 dimms 30/10 devs 8/100 disks 0.3/drive

Table 2: Tier bandwidth and capacity pricing

Hardware vendors indicate that new developments in solid state storage hardware will
continue, and that current limitations, e.g. the limited write bandwidth achieved initially with
XPoint (roughly 10x below RAM memory write speeds), ​do not​ represent fundamental
limitations of the technology and will likely be addressed.

Somewhat in contrast, cluster network bandwidth is presently around 200 Gb/sec per node,
and will continue to face challenges to be a good match for the fastest storage devices.

Node local storage has had and likely will have performance advantages that are
unlikely to be met by any form of shared networked storage solutions.

Economic Models for IO Tier Selection

The use of tiers is a tradeoff between cost and capacity and performance characteristics, at
the time and scale of the deployment of the SDP.

Quantitative information needs to be obtained and analyzed to design a competitive storage
solution. These include future price trends, budgets, required capacity bandwidth and
latency and required re-write durability. Energy consumption and reliability can also be
important.

As an example of a simple extrapolation, it has been predicted that around 2022 the cost of
solid state storage will be lower than that of rotating media on the basis of capacity (on the
basis of bandwidth offered, solid state storage has been cheaper for a long time). In the
presence of multiple storage tiers, networking and service/server infrastructure to handle
additional tiers can present significant costs.

Tiering Software

Implementations and Functionality

Informal approaches to tiering are commonplace and take the form of copying data to local
storage on compute nodes.

To manage a namespace coherent across multiple nodes, tiering software typically
addresses the following concerns. First, it enables small granularity IO through a file system
interface into a storage system on a node. Secondly, it efficiently transports many small
fragments to network storage devices through aggregation. When data needs to be staged

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 7 of 15

into fast tiers prior to use by applications, typically the scheduler leverages a data movement
process to achieve data readiness for the job without locking resources. Archiving data to
slower tiers is simpler and can be done after jobs complete. Sometimes managing tiers is
done while maintaining a global namespace which includes all file names. Such solutions
are deemed very desirable, but are complex to maintain and have not yet become
successful in the market.

When data synchronization is limited to server to client propagation, more tiering solutions
are available based on container principles. A general perspective on tiering with
containers is shown in Figure 1. The container offers a fine granularity file system interface
to an application on the faster storage tier. A streaming mechanism efficiently transports the
contents or differentials of contents from the container to slower tiers.

Figure 1: Faster and slower tiers interacting with containers.

Since the 1990’s HSM software has offered transparent file system tiers, but these are
unlikely to adapt to present day high performance systems. Among these solutions are
HPSS, DMF and SAM QFS. The early 2010’s saw development of tiering software for flash
and disk in a single node, and this has become widely used in appliances shipped by
vendors. Due to required capacity of tiers by SDP, which is likely to exceed anything that
can be attached to a single node, it is not directly applicable as a scalable storage solution.
Newer networked tiering software is being rolled out, e.g. DDN’s IME and Cray® XC™
series DataWarp, and actively being explored in major compute installations. Many systems
such as DAOS and Lustre mention that tiering will be automatically handled at a future point
in time. The validity of such claims needs to be evaluated.

Several important HPC container projects, notably “Shifter” from NERSC, are implementing
a tiering system leveraging containers on compute nodes. The system stores the container
images as files in a cluster file system. The cluster file system’s network IO provides the
large granularity transport of data to the faster nodes. On the faster nodes, these files in the

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 8 of 15

parallel file system are mounted as loopback devices. Each such file is mounted, using it as
a device for a local file system offering that file system as a container on one compute node.
This provides the compute nodes with extremely fast write-back access for data and
metadata stored in the container, and offers many advantages of the data management
offered through the cluster file system.

Presently such systems have little or no client - to - client data synchronization.

If a container system is used, applications may be unable to synchronize data
node-to-node. This can become a major problem if such a feature becomes
desirable at a future point.

The Campaign Storage Approach

Los Alamos National Laboratory has developed an approach to tiering called campaign
storage. Campaign storage considers off the shelf storage systems at different tiers and its
functioning is based on two principles:

1. Each layer only allows specific use patterns. For example, the slowest archival
layers may only be used with specific tools that aggregate data and metadata, the
mid-tier systems can only accept data when it is written with specialized software that
arranges data locality without overhead.

2. A simple job scheduler runs IO jobs for ingest into and staging from slower tiers to
faster tiers. It schedules open-source distributed parallel data movement software
(pftool) that handles refined data placement, integrity. Such distributed parallel data
movement software is not widely available.

The advantages of campaign storage are that it avoids lock in to complex vendor systems,
but it requires planning.

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 9 of 15

Figure 2: Campaign Storage Deployment

IO Libraries to Improve Performance

By 2007 the vast majority of large computers (e.g. the top 20 in the top 500) ran a cluster file
system as their primary storage system for compute jobs. Large IBM systems mostly used
GPFS and other systems used Lustre. Despite this success of cluster file system
technology, IO performance of applications was dramatically different from benchmark
performance. This section describes what developments in software overcome these
problems.

Application IO efficiency (achieved vs offered by hardware and software with fine
tuning of resources) is often a single digit percentage. Scalable performance is
often limited to just a dozen client nodes.

Cluster file systems implement many performance and scalability optimizations, a few of
which we discuss first in this section. Subsequently IO libraries successfully eliminated
most other problems. The most popular IO library is HDF5 (named after the accompanying
file format), but many discoveries and approaches described here were first made in the
context of ADIOS.

Optimizations in Cluster File Systems

Optimizations in cluster file systems initially addressed the capability to handle massive
amounts of clients reliably. Avoidance of thundering herd problems and the elimination of
superfluous remote procedure calls were most central. This was followed by numerous
asynchronous support mechanisms, such as read-ahead, pre-creation of files, and delayed
deletes. To a significant degree these optimizations were required because the VFS layer in
the client operating system used relatively inefficient mechanisms to access server data.

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 10 of 15

Newer, object oriented, cloud storage mechanisms are being considered for HPC loads, and
subject to intense, often uninformed discussion. Such systems work with extremely large
scale clusters, both server and client side. However:

Compared with cloud workloads, HPC IO workloads are extremely bursty and
synchronous, and they may involve up to 100M application threads performing IO
concurrently. Cloud systems have not been adequately tested with such loads, and
few facilities have the ability to do so.

Yet, cloud systems are expected to be the future, and may be usable. We issue the
following guidelines:

If the SDP wishes to use object stores instead of cluster file systems as their
primary storage systems, then:

1. This cannot be done through a simple file system layer over the object
store, and currently file systems over cloud object stores have not been
optimized for HPC use.

2. Efficient IO libraries currently do not layer on systems other than a cluster
file system.

3. The SDP applications must be programmed to leverage the cloud storage
system.

Notwithstanding these recommendations, cloud object stores may ultimately prove
much easier to manage, and more reliable than cluster file systems, but this has
not yet taken place in high end HPC, and progress in this area must be monitored.
However, object store’s benchmark performance for simple loads is now hardware
limited.

Aggregation and alignment

Small IO is very harmful for performance. Even for flash devices, small writes are an order
of magnitude slower than IO with large transfer sizes. Some applications can explicitly
manage data aggregation and perform IO with large transfer sizes, others rely on caches in
the IO system to perform such aggregation. IO libraries such as ADIOS offer extremely
aggressive write caching. Aggregation is generally addressed by using sufficiently large
buffers on which IO is not performed synchronously with updates to the buffer. These
optimizations are normally portable, but can be hindered by a lack of available memory.

A second basic issue is alignment of data. When a single unit of data required by an
application program is distributed over multiple devices unnecessarily this can lead to so
called read-amplification, and to numerous extra RPC’s. Alignment of data is system
independent, and not always tuneable - unless IO software is well planned, portability may
be hindered.

Metadata Interactions

Many cases exist where metadata overhead found in cluster file systems dominates the IO
execution profile, at the expense of IO throughput and latency.

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 11 of 15

A primary culprit in this area is file creation and opening. A mechanism to address this is a
collective open, where a single file handle at the file system level can be used by a large
process group. All IO libraries offer forms of collective file create and opening. When files
are used in this manner, the internal layout of the file may replace what would be offered by
a large collection of open files in a file system.

A second issue is traversal of metadata, in Unix parlance seen in the “ls -l” command. At the
file system level numerous attempts have been made to improve this with widely varying
mechanisms, such as distributed metadata, combining inode and directory entry information
and read-ahead. Traversing collections while using the POSIX interface is limited by single
threaded semantics and locks. IO libraries have taken a different approach to this by
embedding the object collections as trees inside the file data, thereby bypassing POSIX
semantics. In object systems a secondary database is used to hold collections. Few
comparisons exist between these approaches, but generally simply limiting the number of
open files can eliminate such issues.

A strongly coherent directory, regardless of its implementation, poses major threats
to scalability. Such directories can often be avoided when entry names can be
computed instead of retrieved. A decentralized metadata system with weak
coherency (Dropbox being an example) can have excellent scalability.

Directory sizes commonly become problematic when they exceed 10M entries.

Horizontally scalable databases are not known to have brought benefits to HPC
metadata handling.

Non-implemented IO optimizations

Most critical use patterns have been addressed in cluster file system software and/or IO
libraries, but, aside exceptions remain.

A particular issue that remains is that many pathological uses of storage systems exist, and
may be accidentally introduced into applications. While the IO system could detect and warn
about pathological uses, this is only done externally, by using logging and IO analysis
systems (see for example the products from Ellexus Mistral).

Staging

Recent progress on the most complex - all-to-all - data exchanges has found that creating
dynamic staging nodes which aggregate data from many nodes before distributing it to other
nodes, have been successful. However, these approaches have not yet led to mainstream
developments in IO libraries. This may not be relevant to the SDP.

Most importantly - IO libraries lack a facility to perform the data management associated with
staging between tiers, as discussed in the previous section.

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 12 of 15

The structure of future IO software for scientific computing

Future HPC storage software systems are likely to refine current approaches with a 2-3 layer
structure:

Figure 4: module decomposition of future IO stacks

In a file system like Lustre or GPFS internal structures like these are present, but the system
is only usable as a monolithic entity. Future developments may run Lustre on 3rd party
object servers, introducing at least a partial layering. DAOS separates at least the
application layer from the two lower layers. Presently, no middleware layer has full
functionality, leading to many ad-hoc approaches to handle data management problems,
such as adding tiering mechanisms or staging for re-shuffle operations.

The Future IO Application Interface

Three different IO interfaces are likely to be offered at the application level. Possibly all
interfaces offer access to the same data simultaneously:

1. A (near) POSIX file system interface
2. A object and key value store interface
3. The HDF5 interface

Presently object interfaces are made available through separate systems, while HDF5 is
typically layered on the file system. On the world’s very large systems, Lustre holds the
dominant position, IBM Spectrum Scale has a good presence, and at the very top Lustre
forks for China’s Taihu Systems and for Fujitsu’s K system exist.

 Lustre’s dominance may not change for a significant time period.

Although Lustre’s dominance was expected to decrease with the arrival of exa-scale the
formulations found in the Coral 2 RFP’s indicate that it may continue to be used.

The Storage Layer

Future implementations are considering a layered construction where API implementations
are layered on a lower storage layer. Candidates for lower storage layers are:

1. A scalable cluster file system
2. An object store, such as DAOS, CEPH (or numerous commercial variants), cloud

object stores such as Azure Blob or Amazon S3.

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 13 of 15

DAOS is one of the few (the only?) open source project implementing a new underpinning
for exa-scale IO. It has a beautiful design, but despite many years of development, it
appears not yet to be in use. Its implementation is extremely traditional, using C libraries
developed at Argonne and related laboratories, not more modern languages or interfaces
(such as transactional memory). For the foreseeable future, and hinted at in the DOE
2021/2022 exa-scale procurement RFI, Lustre may remain or become the storage layer of
choice for the first exa-scale IO systems, contrary to expectations earlier in the 2010 decade.

Risk Avoidance for SDP Storage and IO

Scope

Purchasing and planning data storage systems is presently a complex undertaking due to
the availability of many tiers.

SDP planning must use refined cost models taking into account capacity and
bandwidth requirements, to meet those of the ingest, imaging and transient data
processing, and data management (e.g. for the use of staging) IO software.

The SDP systems envisage a continuous influx of data (writes of data) from correlation
systems at a rate comparable with 1TB/sec, and consumption of data (reads from a storage
system) at a 10TB/sec rate.

Both read and write rates envisaged for SDP are record breaking numbers, which
likely can only be achieved after overcoming significant difficulties.

In the author’s experience with world class HPC IO systems, all elements of the system -
network, switches, storage devices, busses, processors and all software,have lead to
problems.

Sending reasonably sized IO packets (bigger than 1MB / packet) almost certainly will be
necessary, and the correlation system must support this.

In practice, to avoid congestion, precise routes for data traffic have often been implemented
through low level configuration of switches and routers.

The overhead of IP protocols has had to be addressed with detailed tuning of kernel level
software. Top performance IO systems have ​never before ​used IP networking, but always
relied on RDMA IB networks.

Implementation Choices

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 14 of 15

Without doubt, but rarely done, the most successful use of IO software by major research
laboratories has been enabled through 2 simple mechanisms:

1. All IO is performed exclusively through a customized IO library. In the case of SDP
this library will facilitate the layout of critical data (visiblities, image grids etc).

2. IO benchmarks, not burdened by compute operations, are available to tune and
adjust the IO library. Adjusting IO using real applications is severely hindered by the
fact that IO usually merely consumes a single digit percentage of the runtime, while
more than 90% is spent in computing operations.

SDP should create an IO reference library and IO benchmark prototype to guide
production software development.

Critical Design Review for IO architecture

Ultimately, only a few adjustment to parameters in IO will normally lead to good
performance. The following callout captures these.

 To review an approach to IO validate:
1. Proper alignment with RAID, partition and device boundaries to minimize

protocol overhead and eliminates false sharing.
2. Aggregation to enable reasonable IO transfer sizes, which can deliver a

high percentage of hardware capabilities.
3. Collections of files or objects can be created, traversed and deleted with

adequate speed, and file system directories with many entries (e.g. >100K)
are avoided.

4. Scalability w.r.t. to the number of nodes is proven.
5. The data network and data distributed allow full and even utilization of all

network links.
6. Data is cached or staged for optimal re-use.
7. Small all-to-all data exchanges leverage specialized staging software.

Document No: XXX Unrestricted
Revision: Author: Peter J Braam
Release Date: 2017-12-20 Page 15 of 15

		2018-04-29T21:16:40-0700
	Agreement certified by Adobe Sign

