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SDP Memo Disclaimer 
The SDP memos are designed to allow the quick recording of investigations and research done by 

members of the SDP. They are also designed to raise questions about parts of the SDP design or SDP 

process. The contents of a memo may be the opinion of the author, not the whole of the SDP.  
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1. Introduction 
     This memo aims to model the IO of running SDP graphs on Spark. We start from a baseline 

program which is generated for MID1 ICAL pipeline on Spark. MID1 ICAL is an astronomical 

calibration pipeline which is illustrated in Fig. 1 [1]. In Fig.1, tasks are organized by the logic 

tasks. In this memo, we construct a cost mode and evaluate several different implementations 

of MID1 ICAL Pipeline on Spark [2]. According to the proposed cost model, we redesign the 

data model and try to find an efficient implementation. However, the logic tasks are different 

from the tasks executed by an execution framework (EF for short). An EF task might be a set 

of logic tasks and it is possible that a logic task is implemented by a set of EF tasks concerning 

of the computing and IO usage.  However, in Fig.1, there exist huge IO usages between logic 

tasks. Some of them do not cause IO actually. For example, the execution of several logic tasks 

in a process avoid IO usage by utilizing memory as the data storage. As Fig.2 (a) illustrates, an 

EF task contains three logic tasks, reppre_ifft, degkerupd_deg and pharopre_dft_sumvis. In 

this way, the temporary data between tasks is handled on the fly. While in Fig.2 (b), Task 1, 

Task 2 and Task 3 are EF tasks which have one logic task respectively. Therefore inter-process 

communication is necessary. According to our cluster, the processing speed of inter-process 

is about 3~4 GB/s for a single node. The speed is lower if multiple nodes concerned.  While 

memory speed in a process can reach about 300~400 GB/s. Disk I/O is about 500 MB/s by 

average. The network communication speed is about 1GB/s. Because of the huge IO gap, the 

best way for SDP pipelines is to utilize memory computing in a process as possible as we can.  

We start evaluating SDP EFs with Spark and plan to get an optimized version of the 

baseline program. The reason we consider Spark first because it supports distributed in-

memory iterative computing, which is important for large iterative SDP pipelines.  

There exist several main problems using Spark as the execution framework for MID1 ICAL 

pipeline. For this pipeline, there are several join operations for several data sources. First, 

unfortunately, Spark is inefficient in handling data join because the Shuffle operation is very 

expensive. Second, Spark is implemented in Scala language. The most efficient way is to use 

JVM API (Scala or Java) as the pipeline language. While many astronomical packages are 

implemented in C or Python. Spark supports C or Python by utilizing extra process to 

communicate with the JVM process, which causes performance loss.  
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Notice that for MID1 ICAL pipeline, most of the reduce operations can be done in an 

incremental way. Therefore the reduce operation can be done without waiting for the arrival 

of all of the data items. 
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Fig. 1. Data flow of MID1 ICAL Pipeline (Referenced from [1]) 

 

Fig. 2.  Possible relationships between an EF task and logic tasks 

 

However, the current data model of MID1 ICAL is suitable for a central processing station. 

Shared memory is utilized to parallelize threads on a machine without considering the data 

distribution. But it is unsuitable for distributed processing where shared memory cannot be 

utilized in a simple way. While the network IO for a distributed cluster is much more expensive 

compared with shared memory in a machine. Furthermore, the current data model exists 

huge data movements which should be decreased to improve the IO performance.  For 

distributed computing, data locality is quite important. Spark has three locality types, Process-

local, Node-local and Any (Any means there exists inter-nodes communications). The StarPU 

implementation of MID1 ICAL only has one process, it is typical process local. While for the 

Spark implementation of MID1 ICAL, different stages are executed by different processes. The 

operations on an RDD may be process-local. The communications between RDDs are 

implemented by the communications between Spark executor and Spark worker. In a word, 

the huge gap between the StarPU implementation and the Spark implementation is caused 

by different execution model. StarPU is a thread execution model, while Spark is a 

combination of processes and threads.  By invoking a java implementation of MID1 ICAL IO in 

a Spark task, we get almost the same running time as StarPU.  However, putting all things in 

a process sometimes cannot work because of the resource limits. Furthermore, the StarPU 

implementation by putting all things in a process is not easy to scale out.  
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 We focus on the following issues: 

1: The cost model of MID1 ICAL pipeline on Spark 

2: Designing RDDs in an efficient way 

3: An improved data model considering the data locality for Spark 

2. Modeling MID1 ICAL pipeline on Spark 
2.1 Cost model on Spark 
    The cost for the I/O of the MID1 ICAL pipeline on Spark includes task overheads, memory 

cost, disk cost, network cost, serialization and deserialization cost. We use the time as the 

measure for the cost analysis. According to our experimental results, the overhead for a Spark 

task is less than 3 milliseconds. The memory speed is about 300~400 GB in a process. It is 

about 3~4 GB inter-processes. The disk speed is about 500 MB/s. The network speed is about 

1 GB/s. The number of Spark tasks are related with the number of the RDD partitions. A 

partition is executed by a Spark task. 

We propose a cost model as the following: 

COSTIO = MEMcost+Shufflecost+ Taskoverhead                                       (1) 

MEMcost = RDDmemory + Broadcastmemory + Executionmemory                  (2) 

Shufflecost = Sortcost+DISKcost+SERcost+DESERcost+NETcost                  (3) 

For Spark, the shuffle cost is the most expensive. In our cluster, the processing speed for 
shuffle is about 50 MB/s.  

Because the broadcast variables need to be copied from the 
Spark Worker memory to the Spark Driver memory and are distributed to each computing 
node, given broadcast variable broad, we need (m+1)*sizeof(broad) memory space for a 
Spark cluster with m computing nodes. 
   By now, we use a simple way to compute the cost: 
   COSTIO=Datardd/Speedrdd+Datashuffle/Speedshuffle+ Databroadcast/Speedbroadcast + 

+Executionmemory /Speedmemory +Tasknum*Taskoverhead   (4) 

2.1.1 Memory cost  
Memory cost includes RDD cost, broadcast cost and the cost for data processing in 

memory.   

2.1.2 Shuffle cost  
The shuffle phase is to sort the results of mappers and transfer them to the reducers. 

Because the reducers and mappers may not exist on the same computing nodes. Thus the 
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serialization and deserialization for shuffle data are necessary. Compared with the data 

processing in the main memory, the shuffle data are expensive to be processed.  

¢ƘŜ άŎƻƎǊƻǳǇέΣ άƎǊƻǳǇ.ȅYŜȅέ ŀƴŘ άŦƭŀǘaŀǇέ ŀǊŜ ǘƘǊŜŜ expensive Spark transformations 
which cause shuffle: 
мύ άŎƻƎǊƻǳǇέ 
When called on datasets of type (K, V) and (K, W), returns a dataset of 
 (K, (Iterable<V>, 
Iterable<W>)) tuples. 
нύ άƎǊƻǳǇ.ȅYŜȅέ 
When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs. 
оύ άŦƭŀǘaŀǇέ 
Spark flatMap is a function which expresses a one - to- many transformation. It transforms 
each element to 0 or more elements. 

2.1.3 Spark task overheads of MID1 ICAL pipeline 
   Spark task overheads per task is less than 3ms. We reduce the data scale to a very small 

value and treat the execution time as the task overheads. We use 3ms as the average Spark 

overheads for a task (not include the data processing time). For the auto-generated version, 

12964 tasks are launched. The time for extra task overheads is about 12964*3 ms =38.9 

seconds. The number of Spark tasks is related with the number of the partitions of RDDs. Thus, 

coarse granularity of RDD partitions can decrease the extra Spark task overheads. The size of 

the RDDs and the size of Shuffles are both related with the original data size. The operations 

in an RDD take place in the Spark worker process by a thread. The processing speed during a 

process can reach 300 ~ 400 GB/s. The operations among different RDDs need multiple 

processes, thus inter-process communication and network communication are needed. The 

processing speed for inter-process in a machine is about 3 ~ 4GB/s (Without shuffle). The 

processing speed for shuffle is quite slow, less than 50MB/s for our cluster because of sort 

operations and disk IOs. Furthermore, the flatMap operation causes huge shuffle amount for 

the auto-generated version. More than 60 GB shuffles are generated. The processing time is 

more than 60000/50=1200 seconds. 
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2.2 Current data model of MID1 ICAL pipeline 

 

Fig. 3 Current Data Model of MID1 ICAL Pipeline  

     We use the data model in Fig.3 as a baseline to start the modeling work. This data model 

is extracted from the parameter model.  We assume that we have enough memory and 

computing resources. Different colored nodes represent different logic tasks. All of the 

edges between nodes represent data communication. While the edges with read lines 

represent network communications among cluster nodes.  

As illustrated in Fig.3, six join operations of datasets are needed, denoted as 

comm1~comm6.  To my understanding, we do not need to wait all of the data available to 

start the processing for comm1, comm3, comm4, comm5 and comm6.  Each two data items 

can be processed and reduced.  

1: comm1 
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      In Predict phase, the local sky model is divided into facets, each model facet is predicted 

separately. In the end, the results are collected.  

2: comm2 

    Both the observed visibilities and the predicted visibilities are put together to calibrate. 

The calibration process is independent for each frequency. The results of calibration for all 

the frequencies are needed to correct the observed visibilities.   

3: comm3 

  Visibilities of the specified neighboring frequencies are collected.  

4: comm4  

   For each facet, the visibilities of four polarisations are collected to identify component.  

5: comm5 

   The visibilities of four polarisations for each facet are collected to subtract image 

components. 

6: comm6 

¢ƘŜ ǊŜǎǳƭǘǎ ƻŦ άƛŘŜƴǘƛŦȅ ŎƻƳǇƻƴŜƴǘέ for all of the 81 facets are collected.  

The RDDs in both the auto-generated version and partitioning version are showed in 

 Table 1.  

 RDD name input kernel 

reppre facet of local sky model  

degrid RDD reppre  

pharotpre_dft RDD degrid  

visibility visibility in buffer 
 

timeslot RDD pharotpre_dft, 

RDD visibility 

data reduction by time 

solve RDD timeslot  

 

correct RDD predict_observed, 

solve in Alluxio  
 

grikerupd_rep RDD correct   
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sum_facet RDD grikerupd_rep  

identify_componet RDD sum_facet, RDD 

subtract_ image 

_component 

 

subtract_ image 

_component 

RDD sum_facet, RDD 

identify_componet 
 

source_find RDD 

identify_componet, 

local sky model 

 

Table 1 RDD Design 

2.3 A simplified Data Model of MID1 ICAL Pipeline 
According to the proposed cost model, there are several principles to design a data model 

of MID1 ICAL pipeline on Spark.  

1: The data model should maximize data locality to void inter-process and inter-nodes 

communications. 

 For MID1 ICAL pipeline, the visibilities of the neighboring twenty frequencies should be 

put together. To avoid a huge size, the number of time slot should be decreased. We 

decrease the number of time slots from 120 to 10.  That is, for a processing unit, we 

increase the number of frequencies and decrease the number of time slots to balance the 

unit size. By this way, comm3 in Fig.4 can be avoided. 

  To improve data locality, putting the predicted visibilities and the observed visibilities 

side by side can avoid huge inter-process communications. The communications between 

RDD visibility and RDD pharot_dft can be avoided. 

Comm4 and comm5 in Fig.4 are caused by collecting the visibilities of the four 

polarizations. By putting them together can avoid these communication costs. 

2: The Spark tasks should be process-local ones as possible as we can. That means, we 

should decrease the communications between RDDs. Inside an RDD, the tasks are more 

possible to be process-local ones. 
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3: The number of Spark tasks should be limited. Besides the task overheads, the 

management of Spark tasks needs more memory resource and computing resource.  

A simplified data model, denoted as new model is illustrated in Fig.4.  

 

Fig. 4 A simplified Data Model of MID1 ICAL Pipeline  

3 Analysis and Comparisons of Several Implementations of 
MID1 ICAL Pipeline 
3.1 Overview 

According to the codes generated from the parameter model generator [4], there are 

visibility data of 800 bands of frequency. Each 20 bands can be processed independently. 
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Thus there are 40 groups of the visibility data. The parallel granularity is flexible by the 

combination of frequency, time and facet.  

We introduce auto-generated version, partitioning version, partitioning + Alluxio version 

and StarPU version and analyze the differences.  

If the six data joins in Fig.4 are implemented by Spark shuffle, the experimental results 

show the performance is quite poor. However, all of the six join operations can be 

implemented by the combination of Spark partitioning and Spark broadcast, which cause 

little shuffle cost. Another method is to use Alluxio to solve the data join problem. However, 

the current data model has huge communication cost. Finding a simplified data model for 

Spark is quite necessary. Notice that the comm3 is the most expensive. We can solve it by 

putting the visibilities of neighboring twenty frequencies together. At the same time, we 

reduce the number of time slots in visibility buffer to avoid a huge size.  A simplified data 

model is presented in Fig. 5.  By putting the predicted visibilities and the observed visibility 

together, we can save the cost for comm3. 

 

3.2 The auto-generated version of Spark 
   The auto-generated version uses flatMap to copy data and treat each data block identified 

by a tuple as a partition.  We treat it as a baseline program. 

The auto-generated version has the following features: 

1: There exists data co-location from both three data sources and two data sources via key 

exploration. (This feature causes expensive άcogroupέ operation of Spark)    

2: There are too many stages, which causes huge temporary data contained in RDDs. RDDs 

need extra serialization and deserialization cost. That is, data storing in RDDs is much more 

expensive than directly in the main memory. Furthermore, the data exchange between 

RDDs need inter-process communication.  

3: There exist serious data copy problem.  

    In auto-ƎŜƴŜǊŀǘŜŘ ǾŜǊǎƛƻƴΣ Ƴŀƴȅ άŦƭŀǘaŀǇέ ƻǇŜǊŀǘƛƻƴǎ ŀǊŜ ǳǎŜŘ ǘƻ ŎƻǇȅ ŘŀǘŀΦ  

   To evaluate whether Spark can satisfy the requirements of SDP pipelines, we deploy 

several Spark clusters in different environments and run the baseline program (denoted as 

auto-generated version) on them. The baseline program is written in Scala, which generates 

about 417 G data to mock the data flows for MID1 ICAL pipeline.  
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Fig. 5 Execution information of auto-generated partitioning version 

 

By collecting the statistical info during the execution, we conclude the performance 

bottlenecks listed as below: 

1: Too long resilience links 

2: Unnecessary join costs for two or three massive RDDs  

3: Unnecessary data transfer caused by not considering the data locality 

To optimize the expensive άŎƻƎǊƻǳǇέ operations of the baseline program, we replace 

the άcogroupέ by broadcasting the smaller RDD. By this method, we only need to iterate the 

larger RDD and avoid the expensive join operation. 

However, this kind of optimization is not suitable for the άcogroupέ ƻǇŜǊŀǘƛƻƴ for two or 

more massive RDDs. To solve this problem, we use Alluxio to serve as a distributed cache to 

avoid broadcasting a large RDD and the experimental results are quite good. Alluxio is a 

product from AMPLab, which is the birthplace of Spark. Alluxio can provide data sharing 

across different jobs and different systems with in-memory speed.  
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3.2 Partitioning version and Partitioning + Alluxio version 
   Partitioning version avoids copy data by using Spark collect and Spark broadcast to 

communicate among Spark RDDs.  Spark executor gets the data from Spark workers by 

collect operation and broadcasts the data to the workers which need the data.  The collect 

operations for the six joins in Fig.4 are the bottlenecks of the partitioning version.  To 

improve the communication performance further, partitioning + Alluxio version uses Alluxio 

as a communication tool between RDDs. 

   It is quite simple to install and use Alluxio to store the data of the pipeline. The following 

scripts is used to create the data storage for tasks. For MID1 ICAL pipeline, almost all of the 

combinations of data items can be determined beforehand. Thus it is quite suitable to use 

Alluxio to solve the join problem. 

sudo ./alluxio  fs   rm -R  /pharotpre_dft_sumvis 

sudo ./alluxio  fs   mkdir /pharotpre_dft_sumvis 

sudo ./alluxio  fs   chmod  777 /pharotpre_dft_sumvis 

sudo ./alluxio  fs   rm -R  /cor_subvis_flag 

sudo ./alluxio  fs   mkdir /cor_subvis_flag 

sudo ./alluxio  fs   chmod  777 /cor_subvis_flag 

sudo ./alluxio  fs   rm -R  /visibility_buffer 

sudo ./alluxio  fs   mkdir /visibility_buffer 

sudo ./alluxio  fs   chmod -R  777 /visibility_buffer 

sudo ./alluxio  fs   rm -R  /solve 

sudo ./alluxio  fs   mkdir /solve 

sudo ./alluxio  fs   chmod  777 /solve 

sudo ./alluxio  fs   rm -R  /reppre_ifft 

sudo ./alluxio  fs   mkdir /reppre_ifft 

sudo ./alluxio  fs   chmod  777 /reppre_ifft 

 

3.3 Analysis and evaluation of several key stages 
    We use scale=1/10 to compare the different implementations of Spark.  We evaluate the 

IO of MID1 ICAL for twenty neighboring frequency bands of visibilities. We analyze and 

evaluate several key stages. 

Reppre_ifft & Degrid 
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Different implementations have different mapping strategies. We compare auto-

partitioning version, partitioning version, partitioning+Alluxio version and new model 

version for these two stages.  We compare the number of Spark tasks, the amount of Shuffle 

and the execution time respectively.  

Each partition of an RDD is processed by a Spark task. The auto-partitioning version 

defines a partition with a data block identified by a six-tuple (beam, major_loop, frequency, 

time, facet, polarisation).  For reppre_ifft stage, beam : 0, major_loop : 0, frequency : 1~5, 

time : 0, facet : 1 ~ 81, polarization: 1~4.  For degrid stage, beam : 0, major_loop : 0, 

frequency : 1~20, time : 0, facet : 1 ~ 81, polarization: 1~4. Thus for the auto-generated 

version, there are 1620 Spark tasks for reppre_ifft stage and 6480 Spark tasks for degrid 

stage.  For partitioning version, if the default parallelism is set to 20, there are 20 tasks for 

reppre_ifft stage and degrid stage respectively. The new model version merges reppre_ifft 

stage and degrid stage. Therefore there are 20 tasks for these two stages. The 

partitioning+Alluxio version is almost the same as partitioning version except that it adopts 

Alluxio to save the outputs for both of the stages.  

 Auto-generated Partitioning Partitioning+Alluxio New model 

Task number 8100 40 40 20 

Shuffle 

amount(MB) 

75 3.9 0 2.6 

Execution 

time(second) 

89 11 8 11 

                Table 2   Comparisons of different implementations of reppre & degrid  
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Fig. 6 Data dependency of reppre & degrid (for neighboring 20 frequencies) 

   The input of this stage is the local sky model. The results of reppre_ifft are kept in 

memory. The RDD degrid is organized as <key,value> pairs.  The key is a six tuple of (beam, 

major_loop, frequency, time, facet, polarisation), where beam=0, major_loop: 1~9, 

frequency: 1~800, time: 1~36, facet: 1~81, polarization: 1~4. Each value is of 401.4 MB.  For 

9 iterations, each iteration has an RDD degrid of size 800*81*4*401.4*36= 104042 TB.  

   If a collection of tasks are executed within a process, the cost of communication can be 

saved. As Fig.2 shows, in the first three stages of MID1 ICAL pipeline, the data dependency is 

represented as edges between the nodes, which represent tasks of different stages. A solid 

purple circle represents a task of the reppre stage. A solid green circle represents a task of 

degrid stage. A solid yellow circle represents a task of pharopre_dft stage. For short, we 

denote a task of reppre stage as a purple task, a task of reppre stage as a green task and a task 

of pharopre_dft stage as an orange task. If we have enough memory for a single node, the 

temporary results between the tasks in a process can be in memory directly without the 

communication cost.  

In the new model version, we use the following scripts to merge the two stages together.  

sc.parallelize(initset).flatMap(ix=>reppre_ifft_degrid_kernel(ix,broads_input_telescope_data,broa

dcast_lsm)) 

Here initset is a six-tuple of (beam, major_loop, frequency, time, facet, polarisation). 

Local sky model is shared by Spark broadcast variable. The results of reppre_ifft are kept in 

memory and the output of degrid is stored in RDD degrid.  
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For the four different implementations, Table 2 illustrates the differences. The auto-

generated version launches too many tasks and has shuffles.  

Pharotpre_dft_sumvis 

In this stage, the predicted visibilities of facets belong to the same frequencies are 

collected and processed.  

The auto-generated version makes 324 copies of RDD degrid by Spark flatMap operation. 

This is the reason of the inefficiency.  

The partitioning version uses Spark partitionBy to reorganize RDD degrid and broadcasts 

local sky model, which has a small size. 

The partitioning+Alluxio uses Alluxio to store the outputs. 

For the new model version, the input of this stage is RDD degrid. We use Spark 

partitionBy operation to collect the facets of each 20 neighboring frequency bands and 10 

time slots. As the following scripts illustrates, in each partition, both pharotpre_dft_sumvis 

kernel and visibility kernel are executed. The output is RDD Pharotpre_dft_sumvis including 

both the predicted visibilities and the observed visibilities. By this way, the predicted 

visibilities and the observed visibilities are put side by side and avoid huge communication 

cost putting them together. To avoid a huge size of each item of RDD Pharotpre_dft_sumvis, 

we decrease the number of time slots from 120 to 10. Thus each item of RDD 

Pharotpre_dft_sumvis including the visibilities of twenty frequency bands and 10 time slots.  

RDD Pharotpre_dft_sumvis is generated by the following scripts. 

reppre_ifft_degkerupd_deg.partitionBy  (new 

SDPPartitioner_pharo(12)).mapPartitions(pharotpre_dft_sumvis_visibility_kernel) 

class SDPPartitioner_pharo_newmodel(numParts: Int) extends Partitioner { 
  override def numPartitions: Int = numParts 
  override def getPartition(key: Any): Int = { 
    key.toString.split(',')(3).toInt / 10 
  } 
} 

 

 Auto-generated Partitioning Partitioning+Alluxio New model 

Task number 20 20 40 12 
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Shuffle 

amount(MB) 

511.5 1.9 0 10 

Execution 

time(second) 

144 18 6 3 

                Table 3 Comparisons of different implementations of pharotpre_dft_sumvis  

 

Timeslots 

The visibilities including both the predicted and the observed of each twenty neighboring 

frequencies for a time slot are averaged in this stage.  

 

Fig. 8 timeslots 

 

Correct 

   The input of this stage is RDD pharotpre_dft_sumvis, RDD visibility and RDD solve. Because 

the RDD solve is needed by all of the correct tasks, it can be shared by a Spark broadcast 

variable.  Fig.9 illustrates the data dependency of this stage. 
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Fig.9 Correct 
 

 Auto-generated Partitioning Partitioning+Alluxio New model 

Task number 20 20 40 12 

Shuffle 

amount(MB) 

402.9 1.9 0 10 

Execution 

time(second) 

228 18 6 3 

                Table 4   Comparisons of different implementations of Correct  

 Grikerupd_rep 

The data dependency is illustrated in Fig.10.   

The auto-generated version makes 324 copies of RDD cor_subvis_flag using flatMap 

operation. The partitioning version uses collect and broadcast to avoid data copies. 

According to Formula (4), the partitioning version has broadcast cost, which is inter-process 

communication between Spark driver and Spark worker. The partitioning + Alluxio version 

stores the data treating a facet as a unit and avoids huge data movements. The new model 

version does the data reduction first. Fig.11 illustrates the processing.  
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Fig.10. Grikerupd_rep 

 Auto-generated Partitioning Partitioning+Alluxio New model 

Task number 20 20 40 12 

Shuffle 

amount(MB) 

402.5 2.0 0 0 

RDD 

Input(MB) 

1000 1000 1000 1000 

RDD 

output(MB) 

324000+15811 15811 15811 15811 

Execution 

time(second) 

96 17 16 13 

Table 5   Comparisons of different implementations of  Grikerupd_rep 
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Fig.11. Grikerupd_rep of new model 

 

3.4 Differences between Spark version and StarPU version 
     For the temporary data generated during the execution of the pipeline, different data 

storage methods lead to different costs. The most efficient way is to store data in memory 

directly. The implementation of StarPU version adopts this way. Almost all of the stages are 

executed in a process with multiple threads.  But in this way the execution almost has no 

fault tolerance. There are many temporal data for SDP pipelines. The data in Spark RDD 

needs the serialization and deserialization and other costs concerning of the lineage. By 

now, the current cost model for the SDP pipelines does not consider the cost caused by the 

fault tolerance. For distributed computing, it is necessary to consider the cost.  
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4. Evaluation 
4.1 Comparisons of different implementations of MID1 ICAL IO 

 We use a cluster of three nodes to perform the experiment to compare the auto-

generated version, the partitioning version and partitioning + Alluxio version. Each node has 

64 GB memory and we set the data scale with 1/10. The results are illustrated in Table 6. We 

vary the number of computing nodes with 1, 2 and 3.  As explained before, the auto-

generated version is the slowest because of the data copies and huge amount of shuffle.  By 

now, for partitioning version, the bottleneck exists in five collection operations, which are 

caused by the data movements between the Spark worker and the Spark executor.  

Number of 

nodes 

Auto-generated 

(minutes) 

Partitioning 

(minutes) 

Partitioning+Alluxio 

(minutes) 

New model 

(minutes) 

1 35 7.4 1.3 1.6 

2 18 4.0 1.7 1.7 

3 19 3.8 2.1 1.2 

                Table 6   Comparisons of different implementations of MID1 ICAL (data scale=1/10) 

 

 

Fig.10   Execution statistics of partitioning version 

 



Document No: SDP Memo 059  Unrestricted 

Revision: DRAFT Author: Q. Li et al. 

Release Date: 2018-12-27 Page 24 of 28 

 

Fig.11   Execution statistics of new data model 

 

4.2 Comparisons between Java (Scala) API and Python API  
We rewrite the partitioning version into the Python version and compare the 

performance. With scale=1/1000, the partitioning version needs 18 seconds while the Python 

version needs 27 seconds. With scale=1/100, the Python version fails because the system is 

out of memory. The Python version needs more memory because Spark workers needs to 

copy the data to the Python workers.  Spark supports Python by RPC mechanism. The codes 

are executed in JVM actually, which is illustrated in Fig.12.  Notice that RPC communications 

occur inter-process and network communication cost, which is more expensive than that in 

memory.  








