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SDP Memo Disclaimer

The SDP memos are designed to allow the quick recording of investigations and research done by
members of the SDP. They are also designed to raise questions about parts of the SD&r &3R)n
process. The contents of a memo may be the opinion of the author, not the whole of the SDP.
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1. Introduction

This memo aims toodel the IO of running SDP graphs @park We start from a baseline
program which iggeneratedfor MID1 ICAlpipeline onSpark MID1 ICAlis an astronomical
calibration pipeline which is illustrated in Fig[1]. In Fig.1 tasks are organized by the logic
tasks In this memowe construct a cost modand evaluate several different implementations
of MID1 ICAL Pipeline on Sp§zk According to the proposed cost model, we redesign the
data model and try to fin@n efficient implementationHowever, the logic tasks are different
from the tasks executed bgn execution frameworkEF for short)An ERask mightbe a set
of logic tasks and isipossible that a logic taskimsplemented by a set of EF tasks concerning
of the computing and 10 usagélowever,in Fig.1, there exist huge 10 usageswextnlogic
tasks.Some of them do not cause 10 actualgr examplethe execution of several logic tasks
in a procesavoidlOusageby utilizingmemory as thelatastorage As Fid2 (a)illustrates, an
EF task contains three logic tasks, reppre_dégkerupd_deg and pharopre_dft_sumvis. In
this way, the temporary data between tasks istiked on the fly. While in F@g(b), Task 1,

Task 2 and Task 3 are EF tasks whasteone logidask respectively.Rereforeinter-process
communication isiecessay. According to our clusteithe processing speed of intprocess

is about 3~4 GB/s for a single node. The speed is lower if multiple nodes concerned. While
memory speedn a processan reachabout 300~400 GB/sDisk I/O is about 500 MB/s by
average The network communicatioapeed is about 1GB/Because of the huge 10 gdpe

best wayfor SDP pipelines is to utilize memory computing in a process as possible as we can.

We start evaluating SDP EFs with Spark and plan t@argeptimized version of th
baseline program. Thesason we consider Spark first becauseupports distributedin-
memory iterative computing, which is important flarge iterative SDP pipelines.

There exist several main problems using Spark as the execution framework for MID1 ICAL
pipeline. For this pipeline, there are sevelain operations for several data sourcdsrst,
unfortunately, Spark is inefficient in handling data join because théfiShaperation is very
expensiveSecond, Spark is implemented in Scala languBlge most efficient way is to use
JVM API (Scala or Java) as the pipeline language. While many astronomical packages are
implemented in C or Python. Spark supports C or Pythprutilizing extra process to

communicate with the JVM process, which causes performance loss.
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Notice that for MID1 ICAL pipeline, most of the reduce operations can be done in an

incremental wayTherefore the reduce operation can be done without waitiogthe arrival

of all of the data items.
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Fig. 1 Data flow ofMID1 CAL Pipeline (Referenced fron)[1
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(a) Temporary datain memory ~ (b) Temporary data needs inter-process
communication

Fig. 2 Possible relationshipbetween an EF task and logic tasks

However, thecurrent data model of MID1 ICAL is suitable &central processingstation.
Shared memorys utilized toparallelize threads on a machimgthout considering the data
distribution. But it is unsuitable for distributed pressing where shared memory cext be
utilizedin a simple wayWhile the network I@or a distributed clusteis much more expensive
compared with shared memoriypn a machine Furthermore,the current data model exists
huge data movements which should be decreased to improvel@hperformance. For
distributed computing, data locality qgiite important. Spark hathreelocality types, Process
local, Noddlocal and AnyAnymeans there exists intemodes communicationsYhe StarPU
implementation of MID1 ICAL only has gmecess, it is typical processcal. While for the
Spark implemerdtion of MID1 ICAL, differestages are executed by different processes. The
operations on an RDDnay be processlocal. The communications between RDRse
implemented by the communications between Spark executor and Spark waémkamwvord,

the huge gapbetween the StarPU implementation and the Spark implemeorais caused

by different execution modelStarPU is a thread execution model, while Spark is a
combination of processes and threadBy invokinga java implementation of MID1 ICAL IO in
a Sparkask, we get almost the same running tiras StarPUHowever, putting all things in

a process sometimes cannot work because of the resource limits. Furthermore, the StarPU
implementation by ptting all things in a process not easy to scale out.
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We focus on the following issues:
1: The cost model of MID1 ICAL pipeline on Spark
2: DesignindgRDDsn an efficient way

3: An improved data model considering the data locdlitySpark

2. Modeling MID1 ICAhipelineon Spark

2.1 Cost nodel on Spark
Thecost for the 1/0 of the MID1 ICAL pipeline on Spadkudes task overheads, memory

cost, disk cost, networkost, serialization rad deserialization cost. We uske time as the
measure for the cost analysis. According to our experimeagallts,the overheadfor a Spark
task is ¢ss than 3 mikeconds The memory speed is about 300 GB in a procesh.is
about3~4 GB interprocesses. The disk speed is about 500 MBignetwork speed is about
1 GB/s. The number of Spatdksks are related with theumber of the RDD partitions. A
partition is executed by a Spark task.

We propose a cost model as the following:

COSib = MEMostt Shuffleostt Taskverhead 1)
MEMcost: RDDnemory"‘ BroadcaS‘Bemory"' Executiom’]emory (2)
Shuffleost= Sortostt DISKost SERsttDESEJosttNE Tost (3)

For Spark, the shuffle cost is the most expendiveur cluster, the processing speed for
shuffle is about 50 MB/s.
Because the broadcast variables ne¢ede copied from the
Spark Worker memory to the Spark Driver memory areldistributed to eacltomputing
node, given broadcastariable broad, we need (m+1)*sizeof(broad) memory sgacea
Spark cluster with m computing nodes.
By now, we use a simple way to compute the cost:
COSib=Datardd/Speeddat+Datashutiied/ Speenufiiet Datavroadcas{ Speehroadcast+

+Executi0H]emory/Speed'nemory+TaSk1um*TaSK)verhead (4)
2.1.1Memory ost

Memory cost includes RDD cost, broadcast cost and the cost forptatessingn
memory.

2.1.2Shuffle ost
The shuffle phase is to sort the results of mappers tadsfer them to the reducers.
Because the reducers amdappers may not exist on the same camipg nodes. Thughe
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serialization and deserialization for shuffle data amecessary. Compared with the data
processing in the maimemory, the shuffle data are expensive to be processed.

¢KS aO023aNRdzLIE = & I NP dzLJ. &E&xpéndive Spayfdrsfaintfafionslt a | LJE
which cause shuffle:

MO G O23INERdzLJE

When called on datasets of type (K, V) &ddW), returns a dataset of

(K, (Iterable<Vv>,

Iterable<W>)) tuples.

HO G3IANBdAzL) 8YSete

When called on a dataset of (K, V) pairs, returdataset of (K, IterakkV>) pairs.

o0 aFftl dal LX

Spark flatMap is a function which expresses a-aime many transformation. Itransforms
each elemento O or more elements.

2.1.3Sparkaskoverheads of MID1 ICAlpeline
Spark task overheads per task is less than 3ms. We reduce the data scale to a very small

value and treat the execution time as the task overheads. We use 3ms as the average Spark
overheads for a task (not include the data processing time). For thegarerated version,

12964 tasks are launched. The time for extra task overheads is about 12964*3 ms =38.9
seconds. The number of Spark tasks is related with the number of the partitions of RDDs. Thus,
coarse granularity of RDD patrtitions can decrease the Sqieak task overheads. The size of

the RDDs and the size of Shuffles are both related with the original data size. The operations
in an RDD take place in the Spark worker process by a thread. The processing speed during a
process can reach 300 400 GB/sThe operations among different RDDs need multiple
processes, thus intgorocess communication and network communication are needed. The
processing speed for intggrocess in a machine is about 3 ~ 4GB/s (Without shuffle). The
processing speed for shuffle quite slow, less than 50MB/s for our cluster because of sort
operations and disk IOBurthermore, he flatMap operation causes huge shuffle amount for

the auto-generated version. More than 60 GB shuffles are generated. The processing time is

more than ®000/50=1200 seconds.
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2.2 Qurrent data model oMID1 ICALipeline

Input

Local sky model CspP Local sky model

Network comm1
324*401.4MB=130 G

Network comm2
144*39.6 MB=5.7 GB

| eomesie

Network comm3

20*325.3 GB=6506 GB

Network comm4
4%14.6 GB=58.4 GB

M
4*14.6 GB=58.4

Network commé
81*%0.2 MB=0.2 GB

L] 14.6GB reppre-fit 0.053s 2.1e+07 stagel O 325.3 GB correct0.283 s 2.59e+05 stage?
® 401.4 MB degrid 0.0097s 8.4e+07 stage 2 O 14.6 GB gridk_phar_fft 0.373 s4.2e+06 stage8
O] 325.3 GB Pharotpre_dft 17.3s 2.59e+05 stage3 O 14.6 GB sumfacets 1.8+07 stage9
O 325.3 GB visibility 2.88e+04 staged o identify component 0.566's 2.92e+03 stage10
@ 1568 timesiots 5760 stages @  oiactimage component 0.0276 2926403 stagett
39.6 MB solve 86.8 s 144 stage6 [ source find 2e-07 s 9 stagel2

Fig. 3Current Data Modebf MID1 ICAL Pipeline

We use thalata modelin Fig3 as a baseline to start the modeling woikiis data model
is extracted from the parameter modeWe assumehat we have enoughmemory and
computing resources. Different colored nodepresent different logic task&ll of the
edges between nodes represent data communication. While the edgbsead lines
represent network communications among cluster nodes.

As illustrated in Fig,3ixjoin operations of datasets are needed, denoted as
commtcommé To my understanding, we do not need to wait all of the data available to
start the processinfpr comm31, canm3,comm4,commb5 and comm6Each two data items
can be processed and reduced.

1:comml
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In Predictphase, the local sky model is divided into facets, each model facet is predicted
separately. In the end, the results are collected.

2:comm?2

Both the observed visibilities and the predicted visibilities are put together to calibrate.
The calibration process is independent for each frequency. The results of calibration for all
the frequencies are needed to correct the observed visibilities.

3:comm3

Visiblities of the specified neighlsimg frequencies are collected.
4:comm4

For each facet, the visibilities of four polarisations are collectédentify component
5: comm5

The visibilitiesf four polarisatiors for each facet are collected &ubtract image
components.

6: comm6
¢ KS NBadz Ga 27T foralRobthedhfacets atexaflédrd, Sy G ¢

TheRDDB in both the autegenerated version and partitioning version are showed in

Table 1.
RDD name |input kernel
reppre facetof local sky mode| ®  6ce rppeettc 00536 240007 stager
degrid RDD reppre ®  0L4MB degrid 000975 840407 stage 2
pharotpre_dﬁ RD Djeg |’|d 325.3 GB Pharotpre_dft 17.3s 2.59e+05 stage3
visibility visibility inbuffer @ 325308 visibility 2.88e+0d staged
timeslot RDDpharotpre_dft, datareduction by time
RDD visibility
solve RDDiimeslot
39.6 MB solve 86.8 s 144 stage6
correct RDDJrediCt_Observe,d QO 325368 correct0.2835 259405 stage?
solvein Alluxio
grikerupd_rep RDDcorrect @ s gridk_phar_fft 0.373 542406 stage8
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sum_facet RDDgrikerupd_rep 14.6 GB sumfacets 18407 staged

identify_componet | RDDsum_facet, RDD | O ety component 05665 292e+3 stageo
subtract_ image
_component

SU btract_ | mage R D [HJ m_facet R D D . subtract image component 0.0276 2.92e+03 stagell
_component identify_componet

source find RDD O oumefnd2e07s 9 sugen2
identify_componet,
local skymodel

Table 1 RDIDesign

2.3 A simplified Data Model of MID1 ICAL Pipeline

According to theproposedcost mode] there are several principles to design a data model

of MID1 ICAL pipeline on Spark.

1: The data model should maximize data locabtyoid interprocess and intenodes

communications

For MID1 ICAL pipelinthe visibilities of the neighboring twenty frequencies should be
put together. To avoid a lge size, thenumber of time slot should be decreased. We
decrease the number of timglots from 120 to 10That is, for a processing unit, we
increase the number of frequencies and decrease the number of time slots to balance the

unit size.By this waycomma3in Fig.4 can be avoided.

To improve data locality, putting the predicted bisties and the observed visibilities
side by sidean avoid huge inteprocess communication§he communicatiogbetween

RDDuvisibilityand RDIpharot_dftcan be avoided.

Comm4 and commb5 in Rpare caused bgollecting the visibilities of the four

polarizations. By putting them together can avoid these communication costs.

2: The Spark tasks should be proclkessl ones as possible as we can. That means, we
should decreasehe communications between RDDsside an RDD, the tasks anere

possible to ke procesdocal ones.
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3: The number oEpark tasks should be limiteBesides the task overheads, the

management of Spark tasks needs more memory resource and computing resource.

A simplified data model, denoted asw model is illustrated in Fig.4

|r‘|put I Local sky model 1 csp Local sky model

3247301.4MB*20/12=216.0

% Network comm2 ¥
L 144%39.6 MB=5.7 GB e

| eemsie

6 Metwork commé |
| 8§1*0.2 MB=0.2 GB .‘

¥ *_____,_———

® ®
L 14.6 GB reppre-fft o 542 GB cormect
L 4014 MB degrid

8 O 14.6 GB gridk_phar_fft
(@ 108168 Pharotpre_dft Gvisibility o \dentify component
39.6MB solve . subtract image component
. sounce find

Fig. 4A simplified Data Modedf MID1 ICAL Pipeline

3 Analysis and Comparisons of Several Implemensatbn
MID1 ICAL Pipeline

3.1 Overview
According to the codes geraed from the parameter modeajenerator [4, there are
visibility data o800 bandsf frequency Each 20 bands can be processed independently.
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Thus there are 40 groups of thésibility data The parallel granularity is flexible by the
combination of frequency, time and facet.

We introduceauto-generated version, partitioning versionagtitioning + Alluxio version
and StarPWersion and analyze the differences.

If the sixdata joinsin Fig.4are implemented kg Spark shuffle, the experimental results
show the performance is quitgoor. However, all of the sjgin operations can be
implemented bythe combination of Spark partitioning and Spark broadcastich cause
little shuffle cost. Another method is to use Alluxio to solve the data join proldiawever,
the current data model has huge communication cost. Finding a simplified data model for
Spark is quite necessary. Notice that t@nmma3 is the most expensive. We can solve it by
putting the visibilities of neighboring twenty frequencies togeth&rthe same time, we
reduce the number of time slots in visibility buffer to avoid a huge size. A simplified data
model is presented in Fig. 5. By putting the predicted visibilities and the observed visibility
together, we can save the cost foomm3

3.2 The autogenerated version of Spark
The autegenerated version uses flatMdp copy data and treat eaattata block identified
by a tuple as a partitionWe treat it as a baseline program.

Theauto-generated versiomas the following features:

1: There exists data elocation from both three data sources and two data sources via key

exploration. (This feature causes expamredcogrouE operation of Spark

2: There g too many stages, which caudasge temporary data contained in RDDs. RDDs
needextra serialization andeserializatiorcost. That is, data storing in RDDs is much more
expensive than directly in the main memoRurthermore, he data exchange between

RDDs need intgprocess communication.
3: There exist serious data copy problem.
INautod3 SY SN 6 SR @SNRA2Y S Ylye aFfldal L¥ 2LISNI G

To evaluate whether Spark can satisfy the requirements of SDP pipelines, we deploy
several Spark clusters in different environments and run the baseline progiemoted as
auto-generated versionon them. Thdaselineprogram is written in Scala, which generates

about 417 G data to mock the data flows for MID1 ICAL pipeline.
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Details for Job 0
Status: SUCCEEDED
Completed Stages: 22

» Event Timeline
» DAG Visualization

Completed Stages (22)

stage ld Description Submitted Duration Tasks: SucceededTotal Input  Output shuffle Read Shuffle Write
21 count at Pipeline_partitioning scala: 388 fetails | 2018/08/20 11:23:08 45 81581 7.4MB

20 flatMap at Pipeline_partitioning.scala:361 fetails | 2018/08/20 11:23:06 25 81581 74MB 5.7KB

19 flatMap at Pipeline_partitioning scala:322 fetails 2018/08/20 11:22:55 7s 324/324 7.4MB 7.4MB

18 flathap at Pipeline_parttioning scala:363 fetails 2018/08/20 11:22:55 65 324/324 7.4MB 7.4M8

17 flatMap at Pipeline_partitioning.scala:302 fetails 2018/08/20 11:11:35 11 min 324/324 7.4MB

16 flathviap at Pipeline_partitioning scala:281 fetails 2018/08/20 11:05:15 6.3 min 20/20 64.9 MB 15446 MB
15 flathap at Pipeline_parttioning.scala:254 fetails | 2018/08/20 11:05:07 9s 1201120 296.9 KB 31.0WB
14 (retry 1) flatMap at Pipeline_partitioning.scala:224 fetails | 2018/08/20 10:49:39 15 min 1001100 33GB 2475 KB
13 (retry 1) flatMap at Pipeline_partitioning.scala:204 fetails | 2018/08/20 10:40:06 6.2 min 10110 36MB 10188 M
8 (retry 1) flathap at Pipeline_partitioning.scala: 174 fetails | 2018/08/20 10:39:40 2 1981/1981 453 MB 22WB

11 (retry 1) flatMap at Pipeline_parttioning.scala:252 +details  2018/08/20 10:39:08 295 12112 33608 10.2 M8
12 (retry 1) flatMap at Pipeline_partitioning scala:202 fetails 2018/08/20 10:39:08 6.8 min 13113 72808
6 (retry 1) flatMap at Pipeline_partitioning.scala: 146 fetails  2018/08/20 10:39:07 34s 590/590 38.4 KB 53.8 MB
10 (retry 1) parallelize at Pipeline_partitioning scala:85 fetails 2018/08/20 10:39:01 4s a3 168.0 8

s flathiap at Pipeline_parttioning.scala:250 fetails 2018/08/20 10:18:01 17s 20/20 7.1MB 17.0 MB

2 flathiap at Pipeline_partitioning.scala:279 fetails | 2018/08/20 10:14:12 25 101 6108 20.4 KB

7 flathap at Pipeline_partitioning.scala: 143 fetails | 2018/08/20 10:14:12 s 101 61.08 424.3 KB
5 flatMap at Pipeline_partitioning.scala: 105 fetails | 2018/08/20 10:14:12 45 171 105.4 K8
4 flathap at Pipeline_partitioning.scala: 176 fetails | 2018/08/20 10:14:11 055 101 131508

1 flathap at Pipeline_partitioning.scala: 122 fetails | 2018/08/20 10:14:11 045 11 61.08

3 parallelize at Pipeline_partitioning.scala:46 fetails | 2018/08/20 10:14:09 045 20/20 5408

0 parallelize at Pipeline_partitioning scala:68 fetails | 2018/08/20 10:14:09 25 20/20 46.08

Fig. 5Execution information of autgenerated partitioning version

By collecting thestatistical info during the execution, we conclude the performance

bottlenecks listed as below:
1: Too long resilience links
2: Unnecessary join costs for two or three massive RDDs
3: Unnecessary data transfer caused by not considering the data locality

To optimize the expensivie O 2 3 NaBedatidasof the baselineprogram,we replace
the ccogrougE by broadcasting the smaller RDD. By this neethwe only need to iterate the

largerRDD and avoid the expensive join operation.

However, this kind of optimizabn is not suitable for thécogroug 2 LJS fddtwib br2 y
more massive RDDEo solve this problem, evuse Alluxio to servas a distributed ca@hto
avoid broadcasting a largeDDand the experimental results are quite goddluxio is a
product from AMR.ab, which is the birthplace of Spark. Alluxio can provide data sharing

across different jobs and different systems withnemory speed.
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3.2 Partitioning version anBartitioning +Alluxioversion

Partitioning version avoids copy datg usingSparkcollectand Sparlbroadcastto
communicate among Spark RD[Bpark executor gets the data from Spark workers by
collectoperation and broadcasts the data to the workers which need the data. The collect
operations for the six joins in Fig.4 are the batéeks of the partitioning version. To
improve the communication performance further, partitioning + Alluxio version uses Alluxio
as a communication tool between RDDs.

It is quitesimple to install and use Alluxio to store the data of the pipeline.fohawing
scripts is used to create thaata storage for tasks:zor MID1 ICAL pipeline, almost all of the
combinations of data items care determined beforehand. Thuisis quite suitable to use
Alluxio to solve the join problem.

sudo ./alluxio fs rmR /pharotpre_dft sumvis
sudo ./alluxio fs mkdir /pharotpre_dft_sumvis
sudo ./alluxio fs chmod 777 /pharotpre_dft_sumvis
sudo ./alluxio fs rmR /cor_subvis_flag

sudo ./alluxio fs mkdir /cor_subvis_flag

sudo ./alluxio fs chmod 777 /caubvis_flag
sudo ./alluxio fs rmR /visibility buffer

sudo ./alluxio fs mkdir /visibility buffer

sudo ./alluxio fs chmodR 777 /visibility buffer
sudo ./alluxio fs rmR /solve

sudo ./alluxio fs mkdir /solve

sudo ./alluxio fs chmod77 /solve

sudo ./alluxio fs rrR /reppre_ifft

sudo ./alluxio fs mkdir /reppre_ifft

sudo ./alluxio fs chmod 777 /reppre_ifft

3.3Analysis and evaluation of several key stages

We use scale=1/10 to compare the different implementations of SpAf&evaluate the
IO of MID1 ICAIor twenty neighboring frequency bands of visibilitié§e analyzand
evaluateseveral key stages

Reppre ifft & Degrid
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Different implementations havdifferent mapping strategies. We compare auto
partitioning version, partitioning versigipartitioning+Alluxio versioand new model
version for tkese twostages. We compare the number of Spark tasks, the amount of Shuffle

and the execution time respecsly.

Each partition o&nRDD is processed by a Spark task. The-partttioning version
defines gpartition with a data block identified by a sinple (beam, major_loop, frequency,
time, facet, polarisation) Forreppre_ifftstage,beam : Omajor_loop : O, frequency : 1~5,
time : 0, facet : 1 ~ 81, polarization: 1~Bordegridstage, beam : 0, major_loop : O,
frequency : 1~20, time : O, facet : 1 ~ 81, polarization: Thds for the autegenerated
version, there are 1628parktasksfor reppre_ifft stage and 6480 Spark tasks é@grid
stage For partitioning versionf the default parallelism is set to 2there are 20 tasks for
reppre_ifftstage andlegridstage respectivelyThe new model version mergesppre_ifft
stage anddegridstage. Therefore there are 20 tasks for these two stagks.
partitioning+Alluxio version @lmostthe same as partitioning version except that it adopts

Alluxio to save the outputs for both of the stages.

Auto-generated | Partitioning Partitioning+Allxio | New model
Task number| 8100 40 40 20
Shuffle 75 3.9 0 2.6
amount(MB)
Execution 89 11 8 11
time(second)

Table 2 Comparisons of different implementations i&ppre &degrid
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Fig. 6Data dependency akppre &degrid(for neighboring 20 frequencies)

The input of this stages the local sky model. The resultsreppre_ifftare kept in
memory.The RDDRIegridis organized as <key,value> paii$ie key is aixtuple of (beam,
major_loop, frequency, time,dcet, polarisation) where beam=0, major_loop: 1~9,
frequency: 1~80Qtme: 1~36 facet: 1~8] polarization: 1~4Eachvalue is of 401.MB. For
9 iterations, each iteration has an RD&gridof sizeB00*81*4*401.4*36=104042TB

If a collection of taskare executal within a process, the cost of commication can be
saved. As Figghows, in the first three stages of MID1 ICAL pipeline, the data dependency is
represented as edges between the nodes, which represent tasks of different stages. A solid
purple circle represents a task difie repprestage. A solid green circle represents a task of
degrid stage. A solid yellow circle represents a taskploé&ropre_dftstage. For short, we
denote a task ofepprestage as a purple task, a taskepprestage as a green task and a task
of pharopre_dftstage as an orange task. If we hareughmemory for a single nodehe
temporary results between the tasks in a process can be in memory directly witheut
communication cost.

In the new model versiomwe use the following scripts to merge the two stages together.
sc.parallelize(initset).flatMap(ix=>reppre_iffdegrid_kernel(ix,broads_input_telescope_data,broa
dcast_Ism))

Hereinitset isa sixtuple of (beam, major_loop, frequency, time, facet, poldrsg.

Local sky modes shared by Spark broadcast variable. The resultspgre_ifftare kept in

memory and the output oflegridis stored in RDdegrid
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For the four dfferent implementations, Table ilustrates the differencesl'he aute

generatedversion launches too many tasaed has shuffles.
Pharotpre_dft_sumvis

In this stagethe predicted visibilities of facets belong to the same frequencies are
collected andprocessed

The autegenerated version makes 324 copies of Ri2Bridby SparklatMap operation.
This is the reason of the inefficiency.

The partitioning version uses Spark partitionBy to reorganize d@gBbdand broadcasts
local sky model, which has a small size.

The partitioning+Alluxio uses Alluxio to store the outputs.

For thenew model version e input of thisstageis RDDegrid We useSpark
partitionByoperation to collect the facetsf each 20 neighborinffequencybands and 10
time slots As the following scripts illustrates, in each partition, bpttarotpre_dft_sumvis
kernel andvisibilitykernel are executedl'he output is RDIPharotpre_dft_sumviscluding
both the predicted visibilities and the observed visibilitiBg this way, the predicted
visibilities and the observed visibilities are put side by side antddhuge communication
costputting them together.To avoid a huge size of each item of RERrotpre_dft_sumvis
we decrease the number of time slots from 120 t Thus each item DD
Pharotpre_dft_sumviscluding the visibilities of twenty frequency bands and 10 time slots.
RDDPharotpre_dft_sumvis generated by the following scripts.

reppre_ifft_degkerupd_deg.partitionBy(new
SDPPartitioner_phard(2)).mapPartitions(pharotpre_dft_sumvisvisibility kernel)

class SDPPartitioner_pharo_newmodel(numParts: Int) extends Partitioner {
override def numPartitions: Int = numParts
override def getPartition(key: Any): Int ={
key.toString.split(',")(3).tolnt / 10

}
}
Auto-generated | Partitioning Partitioning+Alluxia New model
Task number| 20 20 40 12
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Shuffle 511.5 1.9 0 10
amount(MB)

Execution 144 18 6 3
time(second)

Table 3Comparisons of different implementations plarotpre_dft_sumvis

Timeslots
The visibilitiesncluding both the predicted and the observetieach twenty neighboring

frequencies for a time slot are averagithis stage

o Fre=20
Fre=1 visibility buffer
| timet |

j timet |

v

time: time: time 120

timeslots

Fig. 8timeslots

Correct
The input of this stages RDDpharotpre_dft_sumvisRDD visibilitand RDDsolve.Because

the RDD solves needed by all of the correct tasks, it can be shared $yark broadcast

variable. Fig.9 illustrates thelata dependency ahis stage.
Unrestricted
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visibility buffer pharotpre dit sumvis
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Fig9 Correct
Auto-generated | Partitioning Partitioning+Alluxig New model

Tasknumber | 20 20 40 12
Shuffle 402.9 1.9 0 10
amount(MB)
Execution 228 18 6 3
time(second)

Table 4 Comparison®f different implementations o€orrect

Grikerupd_rep

The data dependency is illustrated in E@.

The autegenerated version makes 324 copies of RIDD subvis_flagisingflatMap
operation.The partitioning version uses collect and broadcast to avoid data copies.
According to Formula (4), the partitioning version has broadcast cost, which ipiotess
communication between Spark driver and Spark workée partitioning + Alluxio version
stores the data treating a facet as a unit and avoids huge data movements. The new model
version does the data reduction first. Fig.11 illustrates the processing.
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Fre=1

____________________________________

cor subvis flag

Fre=20

Auto-geperated:

telescope data

Copy

+Collect and broadcast

Key=1 Key=2 ey=324
grikerupd pharot grid fit rep
Fig10. Grikerupd rep

Auto-generated | Partitioning Partitioning+Alluxig New model
Task number| 20 20 40 12
Shuffle 402.5 2.0 0 0
amount(MB)
RDD 1000 1000 1000 1000
Input(MB)
RDD 3240006r15811 | 15811 15811 15811
output(MB)
Execution 96 17 16 13
time(second)

Table 5 Comparisons of different implementationsGoikerupd rep
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Collect and broadcast
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Fig11. Grikerupd_rep of new model

3.4Differences between Spark version and StarPU version
For the temporary data generated during the execution of the pipetiiféerent data

storage methods lead to different costs. The most efficient way is to store data in memory
directly. The implementation of StarPU version adopts this way. Almost all of the stages are
executed in a process with multiple threadButin this waythe executionalmost has no

fault tolerance There are many temporal data for SDP pipelines. The data in Spark RDD
needs the serialization and deserializat@md other costs concerning of the lineadgy

now, thecurrentcost model for the SDpipelines does not consider the cost caused by the

fault tolerance. For distributed computing, it is necessary to consider the cost.
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4. Evaluation

4.1 Comparisons of different implementations of MID1 ICAL IO

We use a cluster of three nodes to perform the esipent to comparethe auto-
generated versionthe partitioning versiorand partitioning + Alluxio versioftach node has
64 GB memory and we set the data soaith 1/10. The reslts are illustrated in Table &/e
vary the number of computing nodes with 1, 2 andA% explained before, the auto
generated version is the slowest because of the data copies and huge amount of sByffle.
now, for partitioning version, the bottleneck exssn fivecollectionoperétions, which are
caused by thelata movements between the Spark worker ahd Spark executor.

Number of Auto-generated | Partitioning Partitioning+Alluxig New model

nodes . . . .
(minutes) (minutes) (minutes) (minutes)

1 35 7.4 1.3 1.6

2 18 4.0 1.7 1.7

3 19 3.8 2.1 1.2

Table 6 Comparisons of different implementations of MID1 IQddta scale=1/Q)

Stages for All Jobs

Completed Stages: 17
Completed Stages (17)

Stage ld  Description Submitted Duration  Tasks: Succeeded/Total Input Output  Shuffle Read Shuffle Write

17 count at Pipeline_partitioning_auto_2018 scala:587 +details 2018/09/01 22:42:29 04s 1M 13408

186 flatMap at Pipeline_partitioning_auto_2018 scala:578 +details 2018/09/01 22:42:23 04s M 6008

15 parallelize at Pipeline_partitioning_auto_2018 scala'78 +details  2018/09/01 22:42:23 04s 1M 4608

14 flatMap at Pipeline_partitioning_auto_2018.scala:580 +details  2018/09/01 22:42:23 6s 1M 1896.8 KB 7408

12 count at Pipeline_partitioning_auto_2018.scala:586 +details  2018/09/01 22:42:08 15s 20120 1528.2 MB

1 collect at Pipeline_p3 g_auto_2018 scala 559 +details  2018/09/01 22:41:16 @ 81/81 1920.3 KB

10 map at Pipeline_partitioning_auto_2018 scala473 +details  2018/09/01 22:40:59 17s 20120 1896.8 KB

9 collect at Pipeline_partitioning_auto_2018 scala 415 +details 2018/09/01 22:40:37 @ 20120 12.2 MB

8 collect at Pipeline_partitioning_auto_2018 scala 372 +details 2018/09/01 22:39:58 @ 24124

7 collect at Pipeline_partitioning_auto_2018.scala: 290 +details  2018/09/01 22:39:20 30s 20120 1950.1 KB

6 flatMap at Pipeline_partitioning_auto_2018.scala:208 +details  2018/09/01 22:39:13 75 20120 111.7 MB 2.2MB
collect at Pipeline_partitioning_auto_2018 scala: 180 +details  2018/09/01 22:39:12 07s 1" 6108

4 flatMap at Pipeline_partitioning_auto_2018 scala 176 +details  2018/09/01 22:39°12 08s 111 6108

3 parallelize at Pipeline_partitioning_auto_2018 scala'89 +details 2018/09/01 22:39:10 07s 11 4508

2 collect at Pipeline_partitioning_auto_2018 scala:121 +details 2018/09/01 22:38:35 27s 20120 217.3MB

1 W +details 2018/09/01 22:38:34 07s 11

0 paralielize at Pipeline_partitioning_auto_2018.scala65 +details  2018/09/01 22:38:30 25 1" 5408

Fig.10 Execution statistics qfartitioning version
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Fig.11 Execution statistics of new data model

4.2 Comparisons between Java (Sasid)and Python API

We rewrite the partitioning version into the Python version and compare the
performance. With scale=1/1000, the partitioning version needs 18 seconds while the Python
version needs 27 seconds. With scale=1/100, the Python versioméaidsise the system is
out of memory. The Python version needs more memory because Spark workers needs to
copy the data to the Python workers. Spark supports Python by RPC mechanism. The codes
are executed in JVM actugllwhich is illustrated in Fig.12Notice that RPC communications

occur interprocess and network communication cost, which is more expensive than that in

memory.
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