
Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 1 of 28

SDP Memo 059: Modeling and Evaluating the IO
of MID1 ICAL Pipeline on Spark

5ƻŎǳƳŜƴǘ ƴǳƳōŜǊΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ{5t aŜƳƻ лрф

5ƻŎǳƳŜƴǘ ¢ȅǇŜΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦa9ah

wŜǾƛǎƛƻƴΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦDRAFT

!ǳǘƘƻǊΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦvƛǳƘƻƴƎ [ƛΣ ²Ŝƛ ²ŀƴƎ ŀƴŘ ¸ǳŀƴ Luo

Release 5ŀǘŜΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦнлму-12-27

5ƻŎǳƳŜƴǘ /ƭŀǎǎƛŦƛŎŀǘƛƻƴΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ ¦ƴǊŜǎǘǊƛŎǘŜŘ

Lead Author Designation Affiliation

Qiuhong Li Fudan University

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 2 of 28

SDP Memo Disclaimer
The SDP memos are designed to allow the quick recording of investigations and research done by

members of the SDP. They are also designed to raise questions about parts of the SDP design or SDP

process. The contents of a memo may be the opinion of the author, not the whole of the SDP.

Table of Contents

SDP Memo Disclaimer ... 2

Table of Contents .. 2

1. Introduction .. 4

2. Modeling MID1 ICAL pipeline on Spark .. 7

2.1 Cost model on Spark ... 7

2.1.1 Memory cost .. 7

2.1.2 Shuffle cost ... 7

2.1.3 Spark task overheads of MID1 ICAL pipeline ... 8

2.2 Current data model of MID1 ICAL pipeline ... 9

2.3 A simplified Data Model of MID1 ICAL Pipeline .. 11

3 Analysis and Comparisons of Several Implementations of MID1 ICAL Pipeline 12

3.1 Overview ... 12

3.2 The auto-generated version of Spark ... 13

3.2 Partitioning version and Partitioning + Alluxio version .. 15

3.3 Analysis and evaluation of several key stages .. 15

3.4 Differences between Spark version and StarPU version .. 22

4. Evaluation ... 23

4.1 Comparisons of different implementations of MID1 ICAL IO ... 23

4.2 Comparisons between Java (Scala) API and Python API ... 24

4.3 Wrapping a java implementation of MID1 ICAL IO program on Spark 25

5 ICAL pipeline of ARL on Spark .. 27

6 Conclusion and future work ... 27

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 3 of 28

Reference .. 27

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 4 of 28

1. Introduction
 This memo aims to model the IO of running SDP graphs on Spark. We start from a baseline

program which is generated for MID1 ICAL pipeline on Spark. MID1 ICAL is an astronomical

calibration pipeline which is illustrated in Fig. 1 [1]. In Fig.1, tasks are organized by the logic

tasks. In this memo, we construct a cost mode and evaluate several different implementations

of MID1 ICAL Pipeline on Spark [2]. According to the proposed cost model, we redesign the

data model and try to find an efficient implementation. However, the logic tasks are different

from the tasks executed by an execution framework (EF for short). An EF task might be a set

of logic tasks and it is possible that a logic task is implemented by a set of EF tasks concerning

of the computing and IO usage. However, in Fig.1, there exist huge IO usages between logic

tasks. Some of them do not cause IO actually. For example, the execution of several logic tasks

in a process avoid IO usage by utilizing memory as the data storage. As Fig.2 (a) illustrates, an

EF task contains three logic tasks, reppre_ifft, degkerupd_deg and pharopre_dft_sumvis. In

this way, the temporary data between tasks is handled on the fly. While in Fig.2 (b), Task 1,

Task 2 and Task 3 are EF tasks which have one logic task respectively. Therefore inter-process

communication is necessary. According to our cluster, the processing speed of inter-process

is about 3~4 GB/s for a single node. The speed is lower if multiple nodes concerned. While

memory speed in a process can reach about 300~400 GB/s. Disk I/O is about 500 MB/s by

average. The network communication speed is about 1GB/s. Because of the huge IO gap, the

best way for SDP pipelines is to utilize memory computing in a process as possible as we can.

We start evaluating SDP EFs with Spark and plan to get an optimized version of the

baseline program. The reason we consider Spark first because it supports distributed in-

memory iterative computing, which is important for large iterative SDP pipelines.

There exist several main problems using Spark as the execution framework for MID1 ICAL

pipeline. For this pipeline, there are several join operations for several data sources. First,

unfortunately, Spark is inefficient in handling data join because the Shuffle operation is very

expensive. Second, Spark is implemented in Scala language. The most efficient way is to use

JVM API (Scala or Java) as the pipeline language. While many astronomical packages are

implemented in C or Python. Spark supports C or Python by utilizing extra process to

communicate with the JVM process, which causes performance loss.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 5 of 28

Notice that for MID1 ICAL pipeline, most of the reduce operations can be done in an

incremental way. Therefore the reduce operation can be done without waiting for the arrival

of all of the data items.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 6 of 28

Fig. 1. Data flow of MID1 ICAL Pipeline (Referenced from [1])

Fig. 2. Possible relationships between an EF task and logic tasks

However, the current data model of MID1 ICAL is suitable for a central processing station.

Shared memory is utilized to parallelize threads on a machine without considering the data

distribution. But it is unsuitable for distributed processing where shared memory cannot be

utilized in a simple way. While the network IO for a distributed cluster is much more expensive

compared with shared memory in a machine. Furthermore, the current data model exists

huge data movements which should be decreased to improve the IO performance. For

distributed computing, data locality is quite important. Spark has three locality types, Process-

local, Node-local and Any (Any means there exists inter-nodes communications). The StarPU

implementation of MID1 ICAL only has one process, it is typical process local. While for the

Spark implementation of MID1 ICAL, different stages are executed by different processes. The

operations on an RDD may be process-local. The communications between RDDs are

implemented by the communications between Spark executor and Spark worker. In a word,

the huge gap between the StarPU implementation and the Spark implementation is caused

by different execution model. StarPU is a thread execution model, while Spark is a

combination of processes and threads. By invoking a java implementation of MID1 ICAL IO in

a Spark task, we get almost the same running time as StarPU. However, putting all things in

a process sometimes cannot work because of the resource limits. Furthermore, the StarPU

implementation by putting all things in a process is not easy to scale out.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 7 of 28

 We focus on the following issues:

1: The cost model of MID1 ICAL pipeline on Spark

2: Designing RDDs in an efficient way

3: An improved data model considering the data locality for Spark

2. Modeling MID1 ICAL pipeline on Spark
2.1 Cost model on Spark
 The cost for the I/O of the MID1 ICAL pipeline on Spark includes task overheads, memory

cost, disk cost, network cost, serialization and deserialization cost. We use the time as the

measure for the cost analysis. According to our experimental results, the overhead for a Spark

task is less than 3 milliseconds. The memory speed is about 300~400 GB in a process. It is

about 3~4 GB inter-processes. The disk speed is about 500 MB/s. The network speed is about

1 GB/s. The number of Spark tasks are related with the number of the RDD partitions. A

partition is executed by a Spark task.

We propose a cost model as the following:

COSTIO = MEMcost+Shufflecost+ Taskoverhead (1)

MEMcost = RDDmemory + Broadcastmemory + Executionmemory (2)

Shufflecost = Sortcost+DISKcost+SERcost+DESERcost+NETcost (3)

For Spark, the shuffle cost is the most expensive. In our cluster, the processing speed for
shuffle is about 50 MB/s.

Because the broadcast variables need to be copied from the
Spark Worker memory to the Spark Driver memory and are distributed to each computing
node, given broadcast variable broad, we need (m+1)*sizeof(broad) memory space for a
Spark cluster with m computing nodes.
 By now, we use a simple way to compute the cost:
 COSTIO=Datardd/Speedrdd+Datashuffle/Speedshuffle+ Databroadcast/Speedbroadcast +

+Executionmemory /Speedmemory +Tasknum*Taskoverhead (4)

2.1.1 Memory cost
Memory cost includes RDD cost, broadcast cost and the cost for data processing in

memory.

2.1.2 Shuffle cost
The shuffle phase is to sort the results of mappers and transfer them to the reducers.

Because the reducers and mappers may not exist on the same computing nodes. Thus the

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 8 of 28

serialization and deserialization for shuffle data are necessary. Compared with the data

processing in the main memory, the shuffle data are expensive to be processed.

¢ƘŜ άŎƻƎǊƻǳǇέΣ άƎǊƻǳǇ.ȅYŜȅέ ŀƴŘ άŦƭŀǘaŀǇέ ŀǊŜ ǘƘǊŜŜ expensive Spark transformations
which cause shuffle:
мύ άŎƻƎǊƻǳǇέ
When called on datasets of type (K, V) and (K, W), returns a dataset of
 (K, (Iterable<V>,
Iterable<W>)) tuples.
нύ άƎǊƻǳǇ.ȅYŜȅέ
When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs.
оύ άŦƭŀǘaŀǇέ
Spark flatMap is a function which expresses a one - to- many transformation. It transforms
each element to 0 or more elements.

2.1.3 Spark task overheads of MID1 ICAL pipeline
 Spark task overheads per task is less than 3ms. We reduce the data scale to a very small

value and treat the execution time as the task overheads. We use 3ms as the average Spark

overheads for a task (not include the data processing time). For the auto-generated version,

12964 tasks are launched. The time for extra task overheads is about 12964*3 ms =38.9

seconds. The number of Spark tasks is related with the number of the partitions of RDDs. Thus,

coarse granularity of RDD partitions can decrease the extra Spark task overheads. The size of

the RDDs and the size of Shuffles are both related with the original data size. The operations

in an RDD take place in the Spark worker process by a thread. The processing speed during a

process can reach 300 ~ 400 GB/s. The operations among different RDDs need multiple

processes, thus inter-process communication and network communication are needed. The

processing speed for inter-process in a machine is about 3 ~ 4GB/s (Without shuffle). The

processing speed for shuffle is quite slow, less than 50MB/s for our cluster because of sort

operations and disk IOs. Furthermore, the flatMap operation causes huge shuffle amount for

the auto-generated version. More than 60 GB shuffles are generated. The processing time is

more than 60000/50=1200 seconds.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 9 of 28

2.2 Current data model of MID1 ICAL pipeline

Fig. 3 Current Data Model of MID1 ICAL Pipeline

 We use the data model in Fig.3 as a baseline to start the modeling work. This data model

is extracted from the parameter model. We assume that we have enough memory and

computing resources. Different colored nodes represent different logic tasks. All of the

edges between nodes represent data communication. While the edges with read lines

represent network communications among cluster nodes.

As illustrated in Fig.3, six join operations of datasets are needed, denoted as

comm1~comm6. To my understanding, we do not need to wait all of the data available to

start the processing for comm1, comm3, comm4, comm5 and comm6. Each two data items

can be processed and reduced.

1: comm1

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 10 of 28

 In Predict phase, the local sky model is divided into facets, each model facet is predicted

separately. In the end, the results are collected.

2: comm2

 Both the observed visibilities and the predicted visibilities are put together to calibrate.

The calibration process is independent for each frequency. The results of calibration for all

the frequencies are needed to correct the observed visibilities.

3: comm3

 Visibilities of the specified neighboring frequencies are collected.

4: comm4

 For each facet, the visibilities of four polarisations are collected to identify component.

5: comm5

 The visibilities of four polarisations for each facet are collected to subtract image

components.

6: comm6

¢ƘŜ ǊŜǎǳƭǘǎ ƻŦ άƛŘŜƴǘƛŦȅ ŎƻƳǇƻƴŜƴǘέ for all of the 81 facets are collected.

The RDDs in both the auto-generated version and partitioning version are showed in

 Table 1.

 RDD name input kernel

reppre facet of local sky model

degrid RDD reppre

pharotpre_dft RDD degrid

visibility visibility in buffer

timeslot RDD pharotpre_dft,

RDD visibility

data reduction by time

solve RDD timeslot

correct RDD predict_observed,

solve in Alluxio

grikerupd_rep RDD correct

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 11 of 28

sum_facet RDD grikerupd_rep

identify_componet RDD sum_facet, RDD

subtract_ image

_component

subtract_ image

_component

RDD sum_facet, RDD

identify_componet

source_find RDD

identify_componet,

local sky model

Table 1 RDD Design

2.3 A simplified Data Model of MID1 ICAL Pipeline
According to the proposed cost model, there are several principles to design a data model

of MID1 ICAL pipeline on Spark.

1: The data model should maximize data locality to void inter-process and inter-nodes

communications.

 For MID1 ICAL pipeline, the visibilities of the neighboring twenty frequencies should be

put together. To avoid a huge size, the number of time slot should be decreased. We

decrease the number of time slots from 120 to 10. That is, for a processing unit, we

increase the number of frequencies and decrease the number of time slots to balance the

unit size. By this way, comm3 in Fig.4 can be avoided.

 To improve data locality, putting the predicted visibilities and the observed visibilities

side by side can avoid huge inter-process communications. The communications between

RDD visibility and RDD pharot_dft can be avoided.

Comm4 and comm5 in Fig.4 are caused by collecting the visibilities of the four

polarizations. By putting them together can avoid these communication costs.

2: The Spark tasks should be process-local ones as possible as we can. That means, we

should decrease the communications between RDDs. Inside an RDD, the tasks are more

possible to be process-local ones.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 12 of 28

3: The number of Spark tasks should be limited. Besides the task overheads, the

management of Spark tasks needs more memory resource and computing resource.

A simplified data model, denoted as new model is illustrated in Fig.4.

Fig. 4 A simplified Data Model of MID1 ICAL Pipeline

3 Analysis and Comparisons of Several Implementations of
MID1 ICAL Pipeline
3.1 Overview

According to the codes generated from the parameter model generator [4], there are

visibility data of 800 bands of frequency. Each 20 bands can be processed independently.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 13 of 28

Thus there are 40 groups of the visibility data. The parallel granularity is flexible by the

combination of frequency, time and facet.

We introduce auto-generated version, partitioning version, partitioning + Alluxio version

and StarPU version and analyze the differences.

If the six data joins in Fig.4 are implemented by Spark shuffle, the experimental results

show the performance is quite poor. However, all of the six join operations can be

implemented by the combination of Spark partitioning and Spark broadcast, which cause

little shuffle cost. Another method is to use Alluxio to solve the data join problem. However,

the current data model has huge communication cost. Finding a simplified data model for

Spark is quite necessary. Notice that the comm3 is the most expensive. We can solve it by

putting the visibilities of neighboring twenty frequencies together. At the same time, we

reduce the number of time slots in visibility buffer to avoid a huge size. A simplified data

model is presented in Fig. 5. By putting the predicted visibilities and the observed visibility

together, we can save the cost for comm3.

3.2 The auto-generated version of Spark
 The auto-generated version uses flatMap to copy data and treat each data block identified

by a tuple as a partition. We treat it as a baseline program.

The auto-generated version has the following features:

1: There exists data co-location from both three data sources and two data sources via key

exploration. (This feature causes expensive άcogroupέ operation of Spark)

2: There are too many stages, which causes huge temporary data contained in RDDs. RDDs

need extra serialization and deserialization cost. That is, data storing in RDDs is much more

expensive than directly in the main memory. Furthermore, the data exchange between

RDDs need inter-process communication.

3: There exist serious data copy problem.

 In auto-ƎŜƴŜǊŀǘŜŘ ǾŜǊǎƛƻƴΣ Ƴŀƴȅ άŦƭŀǘaŀǇέ ƻǇŜǊŀǘƛƻƴǎ ŀǊŜ ǳǎŜŘ ǘƻ ŎƻǇȅ ŘŀǘŀΦ

 To evaluate whether Spark can satisfy the requirements of SDP pipelines, we deploy

several Spark clusters in different environments and run the baseline program (denoted as

auto-generated version) on them. The baseline program is written in Scala, which generates

about 417 G data to mock the data flows for MID1 ICAL pipeline.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 14 of 28

Fig. 5 Execution information of auto-generated partitioning version

By collecting the statistical info during the execution, we conclude the performance

bottlenecks listed as below:

1: Too long resilience links

2: Unnecessary join costs for two or three massive RDDs

3: Unnecessary data transfer caused by not considering the data locality

To optimize the expensive άŎƻƎǊƻǳǇέ operations of the baseline program, we replace

the άcogroupέ by broadcasting the smaller RDD. By this method, we only need to iterate the

larger RDD and avoid the expensive join operation.

However, this kind of optimization is not suitable for the άcogroupέ ƻǇŜǊŀǘƛƻƴ for two or

more massive RDDs. To solve this problem, we use Alluxio to serve as a distributed cache to

avoid broadcasting a large RDD and the experimental results are quite good. Alluxio is a

product from AMPLab, which is the birthplace of Spark. Alluxio can provide data sharing

across different jobs and different systems with in-memory speed.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 15 of 28

3.2 Partitioning version and Partitioning + Alluxio version
 Partitioning version avoids copy data by using Spark collect and Spark broadcast to

communicate among Spark RDDs. Spark executor gets the data from Spark workers by

collect operation and broadcasts the data to the workers which need the data. The collect

operations for the six joins in Fig.4 are the bottlenecks of the partitioning version. To

improve the communication performance further, partitioning + Alluxio version uses Alluxio

as a communication tool between RDDs.

 It is quite simple to install and use Alluxio to store the data of the pipeline. The following

scripts is used to create the data storage for tasks. For MID1 ICAL pipeline, almost all of the

combinations of data items can be determined beforehand. Thus it is quite suitable to use

Alluxio to solve the join problem.

sudo ./alluxio fs rm -R /pharotpre_dft_sumvis

sudo ./alluxio fs mkdir /pharotpre_dft_sumvis

sudo ./alluxio fs chmod 777 /pharotpre_dft_sumvis

sudo ./alluxio fs rm -R /cor_subvis_flag

sudo ./alluxio fs mkdir /cor_subvis_flag

sudo ./alluxio fs chmod 777 /cor_subvis_flag

sudo ./alluxio fs rm -R /visibility_buffer

sudo ./alluxio fs mkdir /visibility_buffer

sudo ./alluxio fs chmod -R 777 /visibility_buffer

sudo ./alluxio fs rm -R /solve

sudo ./alluxio fs mkdir /solve

sudo ./alluxio fs chmod 777 /solve

sudo ./alluxio fs rm -R /reppre_ifft

sudo ./alluxio fs mkdir /reppre_ifft

sudo ./alluxio fs chmod 777 /reppre_ifft

3.3 Analysis and evaluation of several key stages
 We use scale=1/10 to compare the different implementations of Spark. We evaluate the

IO of MID1 ICAL for twenty neighboring frequency bands of visibilities. We analyze and

evaluate several key stages.

Reppre_ifft & Degrid

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 16 of 28

Different implementations have different mapping strategies. We compare auto-

partitioning version, partitioning version, partitioning+Alluxio version and new model

version for these two stages. We compare the number of Spark tasks, the amount of Shuffle

and the execution time respectively.

Each partition of an RDD is processed by a Spark task. The auto-partitioning version

defines a partition with a data block identified by a six-tuple (beam, major_loop, frequency,

time, facet, polarisation). For reppre_ifft stage, beam : 0, major_loop : 0, frequency : 1~5,

time : 0, facet : 1 ~ 81, polarization: 1~4. For degrid stage, beam : 0, major_loop : 0,

frequency : 1~20, time : 0, facet : 1 ~ 81, polarization: 1~4. Thus for the auto-generated

version, there are 1620 Spark tasks for reppre_ifft stage and 6480 Spark tasks for degrid

stage. For partitioning version, if the default parallelism is set to 20, there are 20 tasks for

reppre_ifft stage and degrid stage respectively. The new model version merges reppre_ifft

stage and degrid stage. Therefore there are 20 tasks for these two stages. The

partitioning+Alluxio version is almost the same as partitioning version except that it adopts

Alluxio to save the outputs for both of the stages.

 Auto-generated Partitioning Partitioning+Alluxio New model

Task number 8100 40 40 20

Shuffle

amount(MB)

75 3.9 0 2.6

Execution

time(second)

89 11 8 11

 Table 2 Comparisons of different implementations of reppre & degrid

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 17 of 28

Fig. 6 Data dependency of reppre & degrid (for neighboring 20 frequencies)

 The input of this stage is the local sky model. The results of reppre_ifft are kept in

memory. The RDD degrid is organized as <key,value> pairs. The key is a six tuple of (beam,

major_loop, frequency, time, facet, polarisation), where beam=0, major_loop: 1~9,

frequency: 1~800, time: 1~36, facet: 1~81, polarization: 1~4. Each value is of 401.4 MB. For

9 iterations, each iteration has an RDD degrid of size 800*81*4*401.4*36= 104042 TB.

 If a collection of tasks are executed within a process, the cost of communication can be

saved. As Fig.2 shows, in the first three stages of MID1 ICAL pipeline, the data dependency is

represented as edges between the nodes, which represent tasks of different stages. A solid

purple circle represents a task of the reppre stage. A solid green circle represents a task of

degrid stage. A solid yellow circle represents a task of pharopre_dft stage. For short, we

denote a task of reppre stage as a purple task, a task of reppre stage as a green task and a task

of pharopre_dft stage as an orange task. If we have enough memory for a single node, the

temporary results between the tasks in a process can be in memory directly without the

communication cost.

In the new model version, we use the following scripts to merge the two stages together.

sc.parallelize(initset).flatMap(ix=>reppre_ifft_degrid_kernel(ix,broads_input_telescope_data,broa

dcast_lsm))

Here initset is a six-tuple of (beam, major_loop, frequency, time, facet, polarisation).

Local sky model is shared by Spark broadcast variable. The results of reppre_ifft are kept in

memory and the output of degrid is stored in RDD degrid.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 18 of 28

For the four different implementations, Table 2 illustrates the differences. The auto-

generated version launches too many tasks and has shuffles.

Pharotpre_dft_sumvis

In this stage, the predicted visibilities of facets belong to the same frequencies are

collected and processed.

The auto-generated version makes 324 copies of RDD degrid by Spark flatMap operation.

This is the reason of the inefficiency.

The partitioning version uses Spark partitionBy to reorganize RDD degrid and broadcasts

local sky model, which has a small size.

The partitioning+Alluxio uses Alluxio to store the outputs.

For the new model version, the input of this stage is RDD degrid. We use Spark

partitionBy operation to collect the facets of each 20 neighboring frequency bands and 10

time slots. As the following scripts illustrates, in each partition, both pharotpre_dft_sumvis

kernel and visibility kernel are executed. The output is RDD Pharotpre_dft_sumvis including

both the predicted visibilities and the observed visibilities. By this way, the predicted

visibilities and the observed visibilities are put side by side and avoid huge communication

cost putting them together. To avoid a huge size of each item of RDD Pharotpre_dft_sumvis,

we decrease the number of time slots from 120 to 10. Thus each item of RDD

Pharotpre_dft_sumvis including the visibilities of twenty frequency bands and 10 time slots.

RDD Pharotpre_dft_sumvis is generated by the following scripts.

reppre_ifft_degkerupd_deg.partitionBy (new

SDPPartitioner_pharo(12)).mapPartitions(pharotpre_dft_sumvis_visibility_kernel)

class SDPPartitioner_pharo_newmodel(numParts: Int) extends Partitioner {
 override def numPartitions: Int = numParts
 override def getPartition(key: Any): Int = {
 key.toString.split(',')(3).toInt / 10
 }
}

 Auto-generated Partitioning Partitioning+Alluxio New model

Task number 20 20 40 12

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 19 of 28

Shuffle

amount(MB)

511.5 1.9 0 10

Execution

time(second)

144 18 6 3

 Table 3 Comparisons of different implementations of pharotpre_dft_sumvis

Timeslots

The visibilities including both the predicted and the observed of each twenty neighboring

frequencies for a time slot are averaged in this stage.

Fig. 8 timeslots

Correct

 The input of this stage is RDD pharotpre_dft_sumvis, RDD visibility and RDD solve. Because

the RDD solve is needed by all of the correct tasks, it can be shared by a Spark broadcast

variable. Fig.9 illustrates the data dependency of this stage.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 20 of 28

Fig.9 Correct

 Auto-generated Partitioning Partitioning+Alluxio New model

Task number 20 20 40 12

Shuffle

amount(MB)

402.9 1.9 0 10

Execution

time(second)

228 18 6 3

 Table 4 Comparisons of different implementations of Correct

 Grikerupd_rep

The data dependency is illustrated in Fig.10.

The auto-generated version makes 324 copies of RDD cor_subvis_flag using flatMap

operation. The partitioning version uses collect and broadcast to avoid data copies.

According to Formula (4), the partitioning version has broadcast cost, which is inter-process

communication between Spark driver and Spark worker. The partitioning + Alluxio version

stores the data treating a facet as a unit and avoids huge data movements. The new model

version does the data reduction first. Fig.11 illustrates the processing.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 21 of 28

Fig.10. Grikerupd_rep

 Auto-generated Partitioning Partitioning+Alluxio New model

Task number 20 20 40 12

Shuffle

amount(MB)

402.5 2.0 0 0

RDD

Input(MB)

1000 1000 1000 1000

RDD

output(MB)

324000+15811 15811 15811 15811

Execution

time(second)

96 17 16 13

Table 5 Comparisons of different implementations of Grikerupd_rep

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 22 of 28

Fig.11. Grikerupd_rep of new model

3.4 Differences between Spark version and StarPU version
 For the temporary data generated during the execution of the pipeline, different data

storage methods lead to different costs. The most efficient way is to store data in memory

directly. The implementation of StarPU version adopts this way. Almost all of the stages are

executed in a process with multiple threads. But in this way the execution almost has no

fault tolerance. There are many temporal data for SDP pipelines. The data in Spark RDD

needs the serialization and deserialization and other costs concerning of the lineage. By

now, the current cost model for the SDP pipelines does not consider the cost caused by the

fault tolerance. For distributed computing, it is necessary to consider the cost.

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 23 of 28

4. Evaluation
4.1 Comparisons of different implementations of MID1 ICAL IO

 We use a cluster of three nodes to perform the experiment to compare the auto-

generated version, the partitioning version and partitioning + Alluxio version. Each node has

64 GB memory and we set the data scale with 1/10. The results are illustrated in Table 6. We

vary the number of computing nodes with 1, 2 and 3. As explained before, the auto-

generated version is the slowest because of the data copies and huge amount of shuffle. By

now, for partitioning version, the bottleneck exists in five collection operations, which are

caused by the data movements between the Spark worker and the Spark executor.

Number of

nodes

Auto-generated

(minutes)

Partitioning

(minutes)

Partitioning+Alluxio

(minutes)

New model

(minutes)

1 35 7.4 1.3 1.6

2 18 4.0 1.7 1.7

3 19 3.8 2.1 1.2

 Table 6 Comparisons of different implementations of MID1 ICAL (data scale=1/10)

Fig.10 Execution statistics of partitioning version

Document No: SDP Memo 059 Unrestricted

Revision: DRAFT Author: Q. Li et al.

Release Date: 2018-12-27 Page 24 of 28

Fig.11 Execution statistics of new data model

4.2 Comparisons between Java (Scala) API and Python API
We rewrite the partitioning version into the Python version and compare the

performance. With scale=1/1000, the partitioning version needs 18 seconds while the Python

version needs 27 seconds. With scale=1/100, the Python version fails because the system is

out of memory. The Python version needs more memory because Spark workers needs to

copy the data to the Python workers. Spark supports Python by RPC mechanism. The codes

are executed in JVM actually, which is illustrated in Fig.12. Notice that RPC communications

occur inter-process and network communication cost, which is more expensive than that in

memory.

