
 

 

SDP Memo: Fast Fourier Transforms 

 

Document number………………………………………………………….…SKA-TEL-SDP-0000058 

Document Type…………………………………………………………………………………….…REP 

Revision………………………………………………………………………………………………...02C 

Author…………………………………………………………………………………….. Stefano Salvini 

Release Date………………………………………………………………………………….2015-05-29 

Document Classification…………………………………………………………………… Unrestricted 

Status……………………………………………………………………………………………….... Draft 

  



Document No: SKA-TEL-SDP-0000058         Unrestricted 

Revision: 02C                                                                                                      Author: S. Salvini 

Release Date: 2016-03-31                              Page 2 of 21 

 

Lead Author Designation Affiliation 

Stefano Salvini  The University of Oxford 

Signature & Date:  

Released by Designation Affiliation 

Bojan Nikolic SDP Project Engineer University of Cambridge 

Signature & Date:  

 

Version Date of Issue Prepared by Comments 

1 2015-02-09 Stefano Salvini PDR submission 

1A 2015-05-29 Stefano Salvini Updated with PDR 

panel comments 

02C 2016-03-31 Ian Cooper / Ferdl 

Graser 

Copy-edited for 

dPDR submission. 

No content changes 

 

ORGANISATION DETAILS 

Name Science Data Processor Consortium 

 

 

  

Stefano Salvini (Mar 31, 2016)
Stefano Salvini
stef.salvini@oerc.ox.ac.uk

Bojan Nikolic (Mar 31, 2016)
b.nikolic@mrao.cam.ac.uk

https://secure.na1.echosign.com/verifier?tx=CBJCHBCAABAA5xLbXVjvxW8824e7iigq_DMwtwjqLVWe
https://secure.na1.echosign.com/verifier?tx=CBJCHBCAABAA5xLbXVjvxW8824e7iigq_DMwtwjqLVWe


Document No: SKA-TEL-SDP-0000058         Unrestricted 

Revision: 02C                                                                                                      Author: S. Salvini 

Release Date: 2016-03-31                              Page 3 of 21 

Table of Contents 

List of Tables ............................................................................................................................. 4 

1. Introduction ......................................................................................................................... 5 

2. Computational Costs and Complexity ................................................................................. 6 

2.1 Number of Operations .................................................................................................. 6 

2.2 Data Sizes ................................................................................................................... 7 

2.3 Operations Density and Data Movement ...................................................................... 7 

2.4 Observed Efficiency (Performance Relative to Peak) ................................................... 7 

2.5 Partial FFT ................................................................................................................... 8 

3. System and Software Used ................................................................................................. 9 

3.1 CPU Multithreading and FFTW ...................................................................................11 

4. Model Problems .................................................................................................................12 

5. Numerical Performance .....................................................................................................13 

6. Computational Performance ..............................................................................................17 

7. Conclusions .......................................................................................................................20 

 

 

  



Document No: SKA-TEL-SDP-0000058         Unrestricted 

Revision: 02C                                                                                                      Author: S. Salvini 

Release Date: 2016-03-31                              Page 4 of 21 

List of Tables 

Table 1  2D FFT approximate performance (% of peak) ............................................................. 8 

Table 2  Hardware used in the benchmarks ............................................................................... 9 

Table 3  Errors for random matrix (case 1) ................................................................................13 

Table 4  Errors for zero matrix with N sources of unit strength (Case 2) ....................................14 

Table 5  Errors for zero matrix with 1 source of strength 100,000 (Case 3). ..............................15 

Table 6  Execution times in seconds for model problem 1. ........................................................17 

Table 7  Performance figures in Gflops/second for model problem 1. .......................................18 

 

 

  



Document No: SKA-TEL-SDP-0000058         Unrestricted 

Revision: 02C                                                                                                      Author: S. Salvini 

Release Date: 2016-03-31                              Page 5 of 21 

1. Introduction 

The Fast Fourier Transform (FFT) is one of the basic numerical components for SKA SDP 

computational pipelines. 

The following issues have been addressed here: 

1. Present a computational cost and performance model.  This would need to include not 
just the operation counts but also costs incurred in data transfer from outside as well as 
inside computational engines.  This needs to be supported by appropriate benchmarks. 

2. If visibilities are provided in single precision, should we use single or double precision to 
compute FFTs?  What is the difference in terms of numerical accuracy, if any, in different 
realistic regimes?  

3. Are FFTs on different platforms and from different packages or libraries equivalent and 
interchangeable in terms of their numerical properties? 

In a nutshell, the answers to these questions can be summarised as follows: 

1. A simple computational model in terms of operation counts can be proposed.  However, 
the overall computational costs depend strongly on the details of the FFT function and 
only some figure of merit with respect to peak performance can be given. 

2. In the case of single precision visibilities, the difference between computing the FFT in 
single and double precision is between half and one decimal digits (roughly speaking 

𝒪(10−7) against 𝒪(10−8) normwise error in the test cases and problem sizes examined).  
This is unlikely to have any major impact except in very specific circumstances, for 
example if multiple FFTs were to be accumulated in double precision (but then, perhaps, 
they could be computed in single then accumulated in double precision?). 

3. All the platforms and libraries studied show numerical behavior consistent with each 
other.  To all effects, they can be considered fully interchangeable.  

Additionally, some comments are included here for the cases in which a full FFT is not required. 

1. Only a small portion of the image is required (should we use a DFT, thus bypassing the 
gridding?) 

2. If the sky is mostly empty or in the presence of few very bright sources, Sparse FFT 
could be used to lessen the computational costs and limit the image to those regions 
with largest flux. 

This report is structured in sections as follows. The second section will describe the 

computational system and the software used.  The third section will describe the model 

problems used and the criteria for assessment of numerical accuracy and performance.  This is 

followed by two sections: the first reports on the numerical, the second on the computational 

performance, respectively.  The final section will outline the conclusions drawn.  

Obviously, if double precision visibility matrices were provided, FFTs would need to be 

computed in double precision.  Errors and performance figures, in these cases, would be the 

same as those reported for double precision in sections 4 and 5 below.   
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2. Computational Costs and Complexity 

2.1 Number of Operations 

The number of floating-point operations required by an FFT has been long debated.  It actually 

depends on a number of factors: 

 The prime factors of 𝑁, the FFT length 

 The algorithm used and how the software is implemented  

 The use of composite radices:  for example explicit radix-4 components may be used 
rather than iterating 2 radix-2 butterflies, for reason of efficiency.  Although this could 
increase the number of operations, it could also increase data locality and software 
pipelining thus leading to better efficiency. 

The number of operations for a one-dimensional FFT when 𝑁 is a power of 2 is often given as 

𝑁𝑜𝑝𝑠  ~ 5 𝑁 log2 𝑁 

It should be noticed that he situation for prime factors different from 2 is particularly unclear. 

A 2-D FFT is equivalent to 𝑁 FFTs along the columns (or rows) of the data points matrix 

followed by 𝑁 FFTs along the rows (or columns) for a grand total of 10 𝑁2  log2 𝑁 flops.  As the 

matrix of the visibilities is Hermitian, we are interested in Hermitian-to-real 2D FFTs, thus 

halving the number of operations for a total cost of 

𝑁𝑜𝑝𝑠 ~ 5 𝑁2  log2 𝑁 

It is clear that the number of operations can only be seen as “notional”, in the sense that it 

allows a tabulation and prediction of performance and some estimates of efficiency.  The 

operation count that we use here results in computational efficiency of between 8 to 15%.  It 

must be stressed that the efficiency is related to the operation count: changing the operation 

count by some factor, would affect the efficiency by that same factor.  For example, doubling the 

operation count would increase efficiency by a factor 2: thus, the actual computation time would 

be obviously unchanged. 

The actual operation count was measured approximately for the MKL Library tests using Intel 

hardware counters: this indicates that the number of operations is always larger than the value 

of 𝑁𝑜𝑝𝑠 we used, but that the difference was modest and rather consistent across different 

problem sizes.  Hence the value of 𝑁𝑜𝑝𝑠 we used should be viewed as a reasonable lower 

bound on the actual number of operations. 

Also FFTW can return an estimate of the number of operations: this, unfortunately, proved to be 

an unreliable serious underestimate and could not be used. 
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2.2 Data Sizes 

The amount of input as well as output data is: 𝒪(𝑁2).  Temporary storage is required, but its 

size depends on the algorithm implemented, etc., but is likely to be 𝒪(𝐾𝑁), where 𝐾 ≤ 𝑁. 

2.3 Operations Density and Data Movement 

It is now clear that the achievable performance is limited by data-access and very low data 

reuse as at best the number of operations for each item of data is 𝒪(log 𝑁).   

Each FFT sweep, whether for a prime or composite radix, in general would require refreshing 

the data in the active portions of memory (caches, shared memories, etc.) except for the 

smallest sizes.  So, if only radix-2 were used, we would require log2 𝑁 data transfers from 

memories to caches (or shared memory, etc) if radix-2 were bunches into composite radix-4, 

that would become log4 𝑁, thus halving the memory transfer required. 

The computational structure may use smaller radices than the data transfer structure (for 

example, using radix-6 but applying the butterfly as a radix-2 followed by a radix-3).  Different 

platforms would require different, and flexible strategies, hence FFT libraries generally formulate 

a plan before carrying out the computation.  For example, some libraries may “bunch” radices 

into very sizable composites (say up to 256 or 512) from the point of view of data transfer, while 

still applying individual smaller butterflies in sequence.  Naturally, such code is very complex 

and is developed for specific platforms. 

Without great details of the algorithms used (not available for MKL and CUFFT) a data model 

cannot be formed explicitly.  However 

2.4 Observed Efficiency (Performance Relative to Peak) 

As a precise performance model is very difficult to formulate, given the number of operations 

required and the target platform, we can only give some range for a figure of merit which allows 

us to guess a possible range of expected performance using the operation count we have 

defined above. 

This is summarised in table 1 below, based on the benchmarks carried out, where efficiency 

denotes the percentage of peak performance achieved by the computation. 

Obviously, the relative low capacity of PCI-Express causes the very low overall efficiency of 

GPUs when data need to be transferred for each FFT from host. However, we would expect that 

a number of operations would be carried out on visibility data thus data transfer costs could be 

neglected for the FFTs. 
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Table 1  2D FFT approximate performance (% of peak), using 𝑁𝑜𝑝𝑠 = 5 𝑁2  log2 𝑁 

2.5 Partial FFT 

For a very sparse image (few sources in a mostly empty sky) the novel sFFT (Sparse FFT) 

algorithms (http://groups.csail.mit.edu/netmit/sFFT/ and references therein) could be used.  

These have shown very considerable speed-ups with respect to standard FFT and is being 

currently tested by A. Scaife and her team for potential use in the Slow Transients Pipeline and 

the proposed RM Synthesis functionality for ECP140011. 

If only a small portion of the image were required, then DFT could be directly used.  However, 

despite the better data access characteristics, possible gains, if any, should be assessed on an 

individual case basis.  

Single Precision 

CPU Efficiency (multithreaded) 8 – 15 % 

GPU efficiency (data on GPU) <10 – 15 % 

GPU efficiency (incl. data transfer) ~ 1% 

Double Precision 

CPU Efficiency (multithreaded) 8 – 15 % 

GPU efficiency (data on GPU) 10 – 15 % 

GPU efficiency (incl. data transfer) ~ 1% 

http://groups.csail.mit.edu/netmit/sFFT/
http://groups.csail.mit.edu/netmit/sFFT/
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3. System and Software Used 

FFT algorithms are exceptionally important and notoriously difficult to implement in a consistent 

and efficient fashion.  Hardware vendors, such as Intel and NVidia, probably spend larger 

amounts in developing efficient FFTs than on any other numerical software. 

Because of the very low computational density per item of data loaded, typically 𝒪(log 𝑁), tight 

coordination between hardware and code is required to achieve good performance.  In any 

case, performance tends to be much lower than peak, because of the low data re-use. 

Throughout, we have used the SKA testbed codenamed ska4, a high-end two-socket platform, 

at the University of Oxford. This comprises of the components listed in the following table: 

 

Hardware 

 2U chassis with x16 2.5 inch drive bays 

CPUs (2) Dual socket Intel E5-2690 CPUs, @2.9GHz (3.8GHz turbo), 135W TDP, 20MB 
Cache, 8GT/s QPI, Quad memory channel (Max. 51.2GB/s) 

Motherboard X9DRW-3LN4F+ Supermicro motherboard, BIOS version 3.00 

Memory 64GiB (8GiB x 8) ECC DDR3 1600MHz CL11 Single rank RAM 
@1.5V (model: M393B1G70BH0-CK0) 

 Adaptec 71605 16 internal ports RAID card, PCIe 3.0 (x8), Mini-HD SAS, with 1GB 
DDR3 Cache 

 Sixteen 2.5 inch 128GB SATA3/6Gb OCZ Vector MLC NAND SSD's, ~2TB per node 
(RAID 0). 

 Mellanox FDR Infiniband 112Gbit/s (dual ports@56Gbit/s) Connect-IB PCIe 3.0 
(x16) (model: MCB194A-FCAT) 

 Quad port Intel i350 GbE 

PCI-Express 
Bandwidth 

Max: 16 GB/sec 
Max measured (separate benchmark): < 10 GB/sec 

GPU (1) NVIDIA K40 (PCIe 3.0) (12 GBytes) 

  Max Memory Bandwidth: 250 GB/sec 

Table 2  Hardware used in the benchmarks 

The platform ran under Linux Gentoo Base System release 2.2 with Kernel Version: 3.14.3-ck.   

All code was compiled using the Intel C and Fortran compilers version XE 14.0 Update 2 to 

guarantee best performance of all codes (surprisingly, Intel MKL runs slower under GNU 

compilers). 

We have used the following libraries: 
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1. Intel MKL Library. Version 11.1, Update 2. 
Over the years, Intel has developed and maintained FFT functionality in their Math 
Kernel Library (Intel MKL).   The MKL Library provides a good range of functionality and 
best performance for multi-core platforms (multi-core CPUs). 

2. NVidia CUFFT Library Version 5.5. 
NVidia provides the CUFFT Library, which is very much comparable in coverage to the 
Intel MKL and FFTW Libraries (see below), specifically targeted at GPUs.  The available 
functions appear exceptionally fast for data already residing on a GPU.   However, the 
relatively low PCI-Express bandwidth increases computational cost very considerably 
when data loading into the GPU are included.   The newer version of CUFFT is only 
marginally faster. 

3. FFTW version 3.3. 
FFTw is an exceptional, very high quality package, created at MIT and distributed as 
open source.  It is the de facto standard package for FFTs.  This was compiled 
specifically for the computational platform using the Intel compiler. 

The three libraries use slightly different algorithms for the FFT. In all cases, we have used out-

of-place variants (likely to be more efficient). FFT plans (hence computation sequence) vary 

across the libraries, with obvious impact on performance but remarkably little on numerical 

properties, which in all cases follow what was expected (and hoped for).  In particular, they have 

different approaches for non-trivial prime factors.  While FFTW and I believe MKL employ the 

Rader algorithm, CUFFT employs the Bluestein algorithm. Both use convolution to carry out 

computations for non-trivial prime factors, but differ in detail and range of applicability.  For 

example, Rader algorithm does not cater for radix 5 (used in the tests): the effects are 

noticeable more in FFTW than in MKL (where, obviously, special hardware-targeted algorithmic 

components have been developed).  

Given the remit of this investigation, only 2-d complex-to-real FFTs have been reported here.  It 

should be noticed, however, that the same conclusions are reached for other types of FFTs, as 

tests have shown (not reported here). 

FFT functions available from these libraries are used in a sequence of steps: 

1. Create/allocate appropriate data structures 

2. Generate an appropriate FFT plan (this varies from Library to Library). This step can be 
expensive.  However, as a plan can be reused for different data and a good plan can 
make increase the performance of the computational step significantly, plan generation 
costs are not included here and will not be considered any further.  In particular, best 
plans were computed for FFTW. 

3. Carry out the computation 

4. Clean up 

All benchmarks reported used elapsed time, that is, the actual time between issuing a 

computational request (using a function, calling a routine) and exit from this (user-space time).  

All times and performance figures are given by computing a single 2D FFT. 
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To ensure as much as possible uniform benchmarking conditions, a single main program was 

written, calling Intel MKL, FFTW and CUFFT functions.  Results were validated individually and 

also against functions from a different library. 

Code is, naturally, available on request. Code was designed so that alternative model problems 

and error analysis can be easily implemented, including using real data, such as from LOFAR, 

but still using the three FFT libraries. 

3.1 CPU Multithreading and FFTW 

It should be noticed that a multithreaded variant of FFTW was not used in these benchmarks.  

There are a number of reasons for that: first and foremost, the good performance and scaling 

with the number of threads of the Intel MKL Library.  However, as interest in FFTW is very great, 

a direct comparison, for a single thread, has been carried out. 

CPU Multithreaded FFTs are a rather tricky issue, given the low density of operation with 

respect to data.  Multithreaded FFTs are even more so, as multiple threads need to coordinate 

access through shared memory structures (in itself a daunting problem).  Vendors, such as 

Intel, AMD and Nvdia invest considerable resources in optimizing FFTs, which are seen as 

essential to their software portfolio. 

Running in parallel multiple FFTs, say one per thread, is problematic above a certain problem 

size, as considerable memory access clashes may occur.  Intel MKL also would allow the use of 

a two-level parallelism, using OpenMP to parallelise across FFTs, MKL threads within each 

FFT, for potentially best performance across all problem sizes (not studied in this report).  This 

avenue is not open to FFTW which uses OpenMP. 
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4. Model Problems 

In order to create a model problem and assess the quality of the results, the following procedure 

was devised: 

1. Generate an 𝑁 × 𝑁 real matrix 𝐴 using double precision (the “model sky”, so to speak) 

2. Carry out the forward real-to-complex 2-D FFT  𝐵 =  ℱ2(𝐴)  using double precision 
(“interferometry”) 

3. Round the complex Fourier matrix down to single precision 𝐵 ̂ ← round (𝐵) 

(“measurement”) 

4. Carry out the backward complex-to-real 2-D FFT  𝐶 =  ℱ2
−1(𝐵̂)  using either single or 

double double precision (“imaging”). 

Three different types of matrices 𝐴 were used 

1. Random matrices with entries uniformly distributed between 0 and 1.  These give good 
indications of the intrinsic quality of the algorithm and allow a quantitative comparison 
between different algorithms. 

2. Zero matrices with 𝑁 non-zero entries (the “sources”), all equal to 1, at random positions 
in 𝐴. 

3. Zero matrices with 1 non-zero entry (the “strong source”) set arbitrarily to 105.  

For random matrices (model problem 1) error must be normalized over the largest component 

or the norm of the original data.   In general, the error in 2-D FFT should be bound, normwise by 

a function such as 

‖𝐶 − 𝐴‖𝐹  ≤ 𝜖𝑓(𝑁) ‖𝐴‖𝐹 

where 𝜖 is the machine accuracy, 𝑓(𝑁) is a “slowly varying function of the problem size” and 

‖… ‖𝐹 denotes the Frobenius norm (ideally the 2-norm, which is more costly to compute).  

Indeed, for 2-D FFT, 𝑓(𝑁) ~ 1 as indeed the results in Section 4 show. 

For zero matrices with a few non-zero entries (model problem 2 and 3), the analysis of the error 

(particularly important to understand whether single precision is adequate or double precision 

would be required), consisted of these steps: 

1. Set to zero the entries in 𝐶 corresponding to the non-zeros in 𝐴 

2. Compute the error as ‖𝐶‖𝐹 

Here, the idea is to provide some indication as how different precision would affect the capability 

of processing weaker structures in the sky in the presence of stronger sources. 

Given the structure of the code, alternative model problems can be very easily implemented, 

including real data, such as data from LOFAR, etc. 
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5. Numerical Performance 

All numerical results obtained were in line with expectations. Only complex-to-real FFTs were 

considered (see also comments above). 

Errors in Table 3 were computed as  

𝜖 =  
‖𝐴 − 𝐶𝑥‖𝐹

‖𝐴‖𝐹
 

where the subscript 𝑥 denotes either single or double precision; the final part of the table shows 

the difference between the various methods 

Δ𝑗,𝑘 =  
‖𝐶𝑗 −  𝐶𝑘‖

𝐹

‖𝐶𝑗‖
𝐹

 

 

Precision   N 500 1000 2000 4000 8000 10000 15000 

Single 

FFTW 
 

1.21E-07 1.26E-07 1.36E-07 1.36E-07 1.40E-07 1.53E-07 1.54E-07 

MKL 

1 1.19E-07 1.32E-07 1.27E-07 1.33E-07 1.38E-07 1.45E-07 1.50E-07 

2 1.19E-07 1.26E-07 1.27E-07 1.33E-07 1.38E-07 1.45E-07 1.50E-07 

4 1.19E-07 1.26E-07 1.27E-07 1.33E-07 1.38E-07 1.45E-07 1.50E-07 

8 1.19E-07 1.26E-07 1.27E-07 1.33E-07 1.38E-07 1.45E-07 1.50E-07 

12 1.19E-07 1.26E-07 1.27E-07 1.33E-07 1.38E-07 1.45E-07 1.50E-07 

CUFFT 
 

1.30E-07 1.42E-07 1.47E-07 1.47E-07 1.59E-07 1.82E-07 1.91E-07 

          

Double 

FFTW 
 

1.27E-08 2.17E-08 1.42E-08 1.72E-08 2.14E-08 1.33E-08 2.20E-08 

MKL 

1 1.27E-08 2.17E-08 1.42E-08 1.72E-08 2.14E-08 1.33E-08 2.20E-08 

2 1.27E-08 2.17E-08 1.42E-08 1.72E-08 2.14E-08 1.33E-08 2.20E-08 

4 1.27E-08 2.17E-08 1.42E-08 1.72E-08 2.14E-08 1.33E-08 2.20E-08 

8 1.27E-08 2.17E-08 1.42E-08 1.72E-08 2.14E-08 1.33E-08 2.20E-08 

12 1.27E-08 2.17E-08 1.42E-08 1.72E-08 2.14E-08 1.33E-08 2.20E-08 

CUFFT 
 

1.27E-08 2.17E-08 1.42E-08 1.72E-08 2.14E-08 1.33E-08 2.20E-08 

          

Single 

MKL-FFTW 
 

1.51E-07 1.55E-07 1.66E-07 1.73E-07 1.76E-07 1.94E-07 1.96E-07 

MKL-CUFFT 
 

1.64E-07 1.76E-07 1.83E-07 1.87E-07 1.99E-07 2.19E-07 2.31E-07 

FFTW-CUFFT 
 

1.67E-07 1.81E-07 1.92E-07 1.92E-07 2.03E-07 2.30E-07 2.31E-07 

Double 

MKL-FFTW 
 

3.07E-16 3.17E-16 3.26E-16 9.34E-12 3.55E-12 3.01E-12 3.71E-12 

MKL-CUFFT 
 

3.67E-16 3.68E-16 3.85E-16 9.34E-12 3.60E-12 4.24E-12 5.08E-12 

FFTW-CUFFT 
 

3.55E-16 3.61E-16 3.80E-16 7.36E-14 5.85E-13 3.03E-12 4.16E-12 

Table 3  Errors for random matrix (case 1) 
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Errors in Tables 4 and 5 shows different errors, computed as  

𝜖 =  ‖C𝑥‖𝐹 

where the subscript 𝑥 denotes either single or double precision; the final part of the table shows 

the difference between the various methods 

Δ𝑗,𝑘 =  ‖𝐶𝑗̅ −  𝐶𝑘
̅̅ ̅‖

𝐹
 

where the bar denotes matrices with the non-zero elements of the initial matrix 𝐴 set to zero 

(corresponding to perfect removal of sources).  Of course, errors computed as in Table 1 and 

not reported here, show the same behaviour as in Table 1. 

 

Precision 
 

N 500 1000 2000 4000 8000 10000 15000 

Single 

FFTW   3.41E-06 5.16E-06 7.99E-06 1.15E-05 1.69E-05 2.00E-05 2.57E-05 

MKL 

1 3.66E-06 5.42E-06 7.92E-06 1.17E-05 1.73E-05 2.03E-05 2.59E-05 

2 3.66E-06 5.42E-06 7.92E-06 1.17E-05 1.73E-05 2.03E-05 2.59E-05 

4 3.66E-06 5.42E-06 7.92E-06 1.17E-05 1.73E-05 2.03E-05 2.59E-05 

8 3.66E-06 5.42E-06 7.92E-06 1.17E-05 1.73E-05 2.03E-05 2.59E-05 

12 3.66E-06 5.42E-06 7.92E-06 1.17E-05 1.73E-05 2.03E-05 2.59E-05 

CUFFT   3.87E-06 6.43E-06 9.53E-06 1.34E-05 2.04E-05 2.69E-05 2.59E-05 

  
                

Double 

FFTW   5.65E-07 7.99E-07 1.13E-06 1.60E-06 2.27E-06 2.54E-06 3.10E-06 

MKL 

1 5.65E-07 7.99E-07 1.13E-06 1.60E-06 2.27E-06 2.54E-06 3.10E-06 

2 5.65E-07 7.99E-07 1.13E-06 1.60E-06 2.27E-06 2.54E-06 3.10E-06 

4 5.65E-07 7.99E-07 1.13E-06 1.60E-06 2.27E-06 2.54E-06 3.10E-06 

8 5.65E-07 7.99E-07 1.13E-06 1.60E-06 2.27E-06 2.54E-06 3.10E-06 

12 5.65E-07 7.99E-07 1.13E-06 1.60E-06 2.27E-06 2.54E-06 3.10E-06 

CUFFT   5.65E-07 7.99E-07 1.13E-06 1.60E-06 2.27E-06 2.54E-06 3.10E-06 

          

Single 

MKL-FFTW   4.60E-06 6.76E-06 1.04E-05 1.54E-05 2.29E-05 2.70E-05 3.46E-05 

MKL-CUFFT 
 

5.15E-06 8.20E-06 1.21E-05 1.73E-05 2.64E-05 3.31E-05 4.46E-05 

FFTW-CUFFT   5.04E-06 8.07E-06 1.22E-05 1.74E-05 2.63E-05 3.31E-05 4.43E-05 

Double 

MKL-FFTW   2.29E-14 1.47E-14 2.19E-14 3.25E-14 6.74E-10 5.39E-10 5.21E-10 

MKL-CUFFT 
 

2.43E-14 1.89E-14 1.69E-10 4.49E-14 7.43E-14 5.39E-10 4.13E-10 

FFTW-CUFFT   1.20E-14 1.77E-14 1.69E-10 4.32E-14 6.74E-10 1.06E-12 4.19E-10 

Table 4  Errors for zero matrix with 𝑁 sources of unit strength (Case 2) 
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Precision 
 

N 500 1000 2000 4000 8000 10000 15000 

Single 

FFTW   6.25E-03 7.70E-03 7.70E-03 9.05E-03 8.95E-03 1.05E-02 1.37E-02 

MKL 

1 1.01E-02 1.12E-02 1.12E-02 1.19E-02 1.37E-02 1.22E-02 1.38E-02 

2 1.01E-02 1.12E-02 1.12E-02 1.19E-02 1.37E-02 1.22E-02 1.38E-02 

4 1.01E-02 1.12E-02 1.12E-02 1.19E-02 1.37E-02 1.22E-02 1.38E-02 

8 1.01E-02 1.12E-02 1.12E-02 1.19E-02 1.37E-02 1.22E-02 1.38E-02 

12 1.01E-02 1.12E-02 1.12E-02 1.19E-02 1.37E-02 1.22E-02 1.38E-02 

CUFFT   1.10E-02 7.38E-03 9.27E-03 1.50E-02 1.50E-02 1.69E-02 1.71E-02 

          

Double 

FFTW   2.53E-03 2.91E-03 2.91E-03 2.50E-03 2.50E-03 2.46E-03 2.47E-03 

MKL 

1 2.53E-03 2.91E-03 2.91E-03 2.50E-03 2.50E-03 2.46E-03 2.47E-03 

2 2.53E-03 2.91E-03 2.91E-03 2.50E-03 2.50E-03 2.46E-03 2.47E-03 

4 2.53E-03 2.91E-03 2.91E-03 2.50E-03 2.50E-03 2.46E-03 2.47E-03 

8 2.53E-03 2.91E-03 2.91E-03 2.50E-03 2.50E-03 2.46E-03 2.47E-03 

12 2.53E-03 2.91E-03 2.91E-03 2.50E-03 2.50E-03 2.46E-03 2.47E-03 

CUFFT   2.53E-03 2.91E-03 2.91E-03 2.50E-03 2.50E-03 2.46E-03 2.47E-03 

          

Single 

MKL-FFTW   1.02E-02 1.18E-02 1.18E-02 1.43E-02 1.54E-02 1.53E-02 1.89E-02 

MKL-CUFFT 
 

1.56E-02 1.38E-02 1.48E-02 1.96E-02 1.97E-02 2.09E-02 2.14E-02 

FFTW-CUFFT   1.23E-02 1.08E-02 1.22E-02 1.70E-02 1.68E-02 1.93E-02 2.20E-02 

Double 

MKL-FFTW   3.02E-11 3.31E-11 3.33E-11 4.25E-11 4.18E-11 3.47E-11 5.15E-11 

MKL-CUFFT 
 

3.46E-11 3.51E-11 3.80E-11 5.43E-11 5.25E-11 4.16E-11 5.94E-11 

FFTW-CUFFT   3.03E-11 2.42E-11 2.89E-11 4.12E-11 4.35E-11 3.58E-11 5.53E-11 

Table 5  Errors for zero matrix with 1 source of strength 100,000 (Case 3). 

As the tables show, the difference between double precision and single precision FFT amounts 

to between a half to one decimal digit in all cases examined. Differences between the results 

from FFTW, Intel MKL and CUFFT are in agreement with each other within the expected 

tolerance. Variations across the three methods fall within expected tolerances and are due to 

different ordering of operations, different plans etc. 

In use, FFTW, Intel MKL and CUFFT can be used to all effects interchangeably to compute the 

FFTs. 

Case 2 and particularly 3 deserve some further comments.  It had been argued that double 

precision FFT would be required from single precision visibilities in order to extract the weaker 

structures in a sky image.  This appears only partially supported by the results. Consistently, 

across the FFT Libraries and problem sizes, the difference between single and double precision 

results amount to around half a decimal digit (roughly speaking a factor of 4 or less).  Single 

precision results have been shown to have error of order 𝒪(10−7) in line with expectations (and 

hopes). 
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Whether the extra costs (and memory) required by employing double precision are justifiable for 

minor gains in errors is a question beyond the scope of this report, but which should none the 

less be raised as appropriate. 
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6. Computational Performance 

Table 6 reports the computational time (benchmarks) in seconds for a number of problem sizes 

only for the model problem 1.  Other model problems return very similar performance figures. 

 

Table 6  Execution times in seconds for model problem 1. 

 

Notice the following: 

Single Precision 2D FFT execution time (all times in seconds) 

 
FFTW Intel MKL (N.threads are indicated) CUFFT 

N 
 

1 2 4 6 8 10 12 14 
 

memcpy 

500 0.0012 0.0011 0.0006 0.0004 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0008 

512 0.0009 0.0008 0.0004 0.0004 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0008 

1000 0.0053 0.0048 0.0027 0.0015 0.0010 0.0008 0.0007 0.0006 0.0005 0.0003 0.0023 

1024 0.0047 0.0046 0.0024 0.0016 0.0011 0.0009 0.0007 0.0006 0.0006 0.0003 0.0024 

2000 0.0224 0.0251 0.0136 0.0082 0.0059 0.0051 0.0044 0.0040 0.0040 0.0008 0.0092 

2048 0.0233 0.0265 0.0140 0.0098 0.0067 0.0057 0.0047 0.0044 0.0041 0.0007 0.0095 

4000 0.1103 0.1164 0.0613 0.0398 0.0260 0.0215 0.0205 0.0184 0.0176 0.0030 0.0357 

4096 0.1166 0.1226 0.0640 0.0421 0.0282 0.0257 0.0222 0.0213 0.0204 0.0025 0.0365 

8000 0.5078 0.5192 0.2731 0.1670 0.1200 0.0970 0.0934 0.0803 0.0800 0.0115 0.1423 

8192 0.5157 0.5469 0.2889 0.1850 0.1315 0.1090 0.0907 0.0858 0.0858 0.0094 0.1455 

10000 0.8746 0.7818 0.3979 0.2268 0.1649 0.1458 0.1337 0.1288 0.1273 0.0232 0.2285 

15000 2.2398 1.7923 0.9252 0.5621 0.4548 0.3704 0.3376 0.3195 0.3146 0.0667 0.5292 

16384 2.3225 2.2198 1.1470 0.7371 0.4892 0.4436 0.3856 0.3642 0.3338 0.0444 0.5872 

            Double Precision 2D FFT execution time (all times in seconds) 

 
FFTW Intel MKL (N.threads are indicated) CUFFT 

N 
 

1 2 4 6 8 10 12 14 
 

memcpy 

500 0.0016 0.0015 0.0008 0.0006 0.0004 0.0003 0.0003 0.0002 0.0002 0.0002 0.0013 

512 0.0015 0.0013 0.0007 0.0005 0.0004 0.0003 0.0002 0.0002 0.0002 0.0002 0.0013 

1000 0.0083 0.0074 0.0039 0.0021 0.0014 0.0011 0.0009 0.0008 0.0007 0.0005 0.0045 

1024 0.0089 0.0075 0.0041 0.0025 0.0017 0.0015 0.0013 0.0012 0.0011 0.0004 0.0046 

2000 0.0363 0.0406 0.0212 0.0127 0.0091 0.0077 0.0072 0.0068 0.0068 0.0015 0.0181 

2048 0.0467 0.0417 0.0223 0.0145 0.0107 0.0105 0.0086 0.0075 0.0072 0.0013 0.0187 

4000 0.1789 0.1974 0.0974 0.0581 0.0422 0.0352 0.0328 0.0306 0.0309 0.0056 0.0714 

4096 0.1881 0.2053 0.1056 0.0675 0.0494 0.0474 0.0409 0.0400 0.0391 0.0050 0.0731 

8000 0.8133 0.7796 0.3999 0.2353 0.1761 0.1559 0.1627 0.1319 0.1316 0.0223 0.2844 

8192 0.8401 0.7909 0.4099 0.2621 0.1927 0.1792 0.1491 0.1440 0.1491 0.0230 0.2951 

10000 1.3616 1.2009 0.6096 0.3621 0.2631 0.2314 0.2284 0.2172 0.2077 0.0467 0.4549 

15000 3.2772 2.8136 1.4506 0.8547 0.6303 0.5364 0.5077 0.5581 0.6193 0.1339 1.0496 

16384 3.6416 3.3374 1.8158 1.0501 0.7700 0.7104 0.6408 0.6058 0.5709 0.0923 1.1759 



Document No: SKA-TEL-SDP-0000058         Unrestricted 

Revision: 02C                                                                                                      Author: S. Salvini 

Release Date: 2016-03-31                              Page 18 of 21 

 Cost for the plan generation (very expensive for FFTW) are neither considered nor 
included. 

 Intel MKL is fully multithreaded.  Computational times are reported for various numbers 
of threads. 

Table 7  Performance figures in Gflops/second for model problem 1 (using 𝑁𝑜𝑝𝑠 =  5 𝑁2 log2 𝑁). 

For CUFFT, two sets of results are reported: one with data already placed in the GPU (no 

heading), and one including data transfer to the GPU (heading: “memcpy”) 

 

Very approximate computational rates are shown in the table below, using the number of 

operations 𝑁𝑜𝑝𝑠 = 5 𝑁2  log2 𝑁 (discussed in the section “Computational Costs and Complexity” 

Single Precision 2D FFT performance (all figures in GFlops/second) 

 
FFTW Intel MKL (N.threads are indicated) CUFFT 

N   1 2 4 6 8 10 12 14   memcpy 

500 9.4 10.6 20.0 28.0 37.4 43.1 56.0 62.3 59.0 57.2 14.5 

512 12.8 14.0 26.8 32.8 45.4 49.2 69.4 73.7 78.6 67.0 14.8 

1000 9.5 10.3 18.4 33.4 47.9 63.9 73.3 89.0 92.3 160.8 21.2 

1024 11.2 11.4 22.0 32.0 49.5 57.6 71.8 85.9 87.4 191.2 21.6 

2000 9.8 8.8 16.1 26.6 37.5 43.3 50.0 55.0 54.6 270.1 23.8 

2048 9.9 8.7 16.5 23.6 34.6 40.8 48.8 53.0 57.0 314.7 24.4 

4000 8.7 8.2 15.6 24.1 36.9 44.5 46.7 52.1 54.4 323.4 26.8 

4096 8.6 8.2 15.7 23.9 35.7 39.2 45.3 47.2 49.4 410.0 27.6 

8000 8.2 8.0 15.2 24.9 34.6 42.8 44.4 51.7 51.8 362.4 29.1 

8192 8.5 8.0 15.1 23.6 33.2 40.0 48.1 50.8 50.8 465.3 30.0 

10000 7.6 8.5 16.7 29.3 40.3 45.6 49.7 51.6 52.2 286.3 29.1 

15000 7.0 8.7 16.9 27.8 34.3 42.1 46.2 48.8 49.6 234.1 29.5 

16384 8.1 8.5 16.4 25.5 38.4 42.4 48.7 51.6 56.3 423.1 32.0 

            Double Precision 2D FFT performance (all figures in GFlops/second) 

 
FFTW Intel MKL (N.threads are indicated) CUFFT 

N   1 2 4 6 8 10 12 14   memcpy 

500 6.9 7.5 14.4 20.2 30.4 38.0 44.3 49.1 56.6 45.2 8.4 

512 7.9 9.0 17.0 22.5 33.1 41.1 50.0 56.2 58.1 52.2 8.8 

1000 6.0 6.7 12.9 24.2 34.9 44.8 56.9 66.0 69.9 104.9 11.2 

1024 5.9 7.0 12.7 21.2 31.5 35.6 41.8 45.2 49.5 125.4 11.3 

2000 6.0 5.4 10.3 17.3 24.2 28.4 30.5 32.0 32.3 145.5 12.1 

2048 4.9 5.5 10.3 15.9 21.6 21.9 26.7 30.8 32.2 172.4 12.4 

4000 5.4 4.9 9.8 16.5 22.7 27.2 29.2 31.3 30.9 170.2 13.4 

4096 5.4 4.9 9.5 14.9 20.4 21.2 24.6 25.2 25.7 200.0 13.8 

8000 5.1 5.3 10.4 17.6 23.6 26.6 25.5 31.4 31.5 186.0 14.6 

8192 5.2 5.5 10.6 16.6 22.6 24.3 29.2 30.3 29.3 189.6 14.8 

10000 4.9 5.5 10.9 18.3 25.3 28.7 29.1 30.6 32.0 142.4 14.6 

15000 4.8 5.5 10.8 18.3 24.8 29.1 30.7 28.0 25.2 116.6 14.9 

16384 5.2 5.6 10.3 17.9 24.4 26.4 29.3 31.0 32.9 203.6 16.0 
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above). The tables clearly show that CUFFT has very considerable speed advantage over the 

Intel MKL Library.  However, when data transfer to GPU is required and considered, it is the 

Intel MKL FFT, which is clearly better. 

The single-thread performance of FFTW and Intel MKL are very comparable.  The two methods 

differ in the plan selection and algorithmic details. 
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7. Conclusions 

The analysis of the tests carried out lead to the following conclusions. 

1. A simple “exact” computational cost model cannot be generated, given the strong 
dependence on algorithms, prime factors, software organization, data transfer rates, etc. 
However, we have used throughout a consistent number of operations and the results 
show that performance figures can therefore be seen and analysed consistently. 

2. For single precision visibilities, the computational costs incurred in using double 
precision rather than single precision FFTs do not appear justified except, perhaps, in 
special cases 

a. Differences between single and double precision correspond, in all cases 
examined, to adding an extra half decimal digit (i.e. 2-3 bits at most) to results 
that are already accurate in all cases to almost numerical precision (7 decimal 
digits). 

b. Computational costs are higher for double precision particularly in the case, as 
expected, for CUFFT (double the cost) 

3. Point 2. above does not apply, of course, to double precision visibilities with a number of 
significant digits exceeding single precision (about 7 decimal digits). 

4. The different libraries and platforms have been shown to produce solutions very much 
consistent with each other.  As far as it can be ascertained, the libraries and platforms 
studied here must be viewed as wholly interchangeable.  

5. Performance figure support the possibility that more than one solution would be needed. 

a. Because of the low computation to data transfer ratio (low date reuse) 
performance figures are in all cases ≤ 15 %.  

b. Consistently, double precision is twice as expensive as single precision for all 
FFTs examined, as expected 

c. FFTW. 
In line of principle, it would be possible to use multi-threaded FFTW, but that 
would require special compilation, etc.  Incorrect compilation of FFTW would 
results in poor performance.  It is not recommended to use FFTW on Intel CPUs. 

d. MKL. 
For use on CPUs, Intel MKL Library should be used.  Performance is slightly 
better than FFTW using a single core, and shows good scalability when the low 
computational density of FFTs are taken into account. 

e. CUFFT. 
Performance for data already residing in the GPU memory is extremely high (up 
to ten times higher than multi-threaded MKL).  However, when data do not 
already reside in the GPU, PCI-Express represents a very considerable 
bottleneck and multi-threaded MKL FFTs should be used instead.  It should also 
bet noticed that forthcoming PCI_E4 (not yet released) would ameliorate slightly 
(up to 32 GB/sec) the situation, but not resolve it.  Hence, a heterogeneous 
computing solution, where data are transferred to GPU for specific computations) 
should be avoided. 
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All the libraries studied here have been produced at great cost by teams of specialists.  FFTs 

are very far from trivial and are the subject of advanced investigations.  Such libraries should be 

used whenever possible. Also, the efficiency of code compiled from sources depends very much 

on the compiler, the platform, the source etc. 
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