
  

 

SDP Memo 017: Dataflow Choice 

 
Document number………………………………...………………………..SKA-TEL-SDP-0000066 
Context…………………………………………..……………………………………………..…ARCH 
Revision…………………………………………………………………………………………………1 
Author…………………………………………..….……………………………………….M. Dolensky 
Release Date…………………………………………………………………………..…. 2015-05-29 
Document Classification…………………………………………………………...……. Unrestricted 
Status………………………………………………………………………………………………. Draft 
 
 

Name Designation Affiliation 

   

Signature & Date:   

 
 

Version Date of Issue Prepared by Comments 

1 2015-05-29 M. Dolensky PDR close-out action 

Document No: XXX Unrestricted 
Revision:                                                                                                                     Author: 
XXXx 
Release Date: YYYY-MM-DD  Page 1 of 13 



    

 

 
ORGANISATION DETAILS 

Name Science Data Processor Consortium 

 
 
  

Document No: XXX Unrestricted 
Revision:                                                                                                                     Author: 
XXXx 
Release Date: YYYY-MM-DD  Page 2 of 13 



1 Table of Contents 

1 Table of Contents 
2 List of Figures 
3 List of Tables 
4 Introduction 
5 References 

5.1 Applicable Documents 
5.2 Reference Documents 

6 Existing Dataflow Architectures 
6.1 Dataflow Approaches 
6.2 Memory Models 
6.2.1 Distributed Memory: MPI Cluster 
6.2.2 Shared Memory: OpenMP 
6.2.3 Hybrid Architectures 
6.3 Programming Paradigms 

6.3.1 MapReduce 
6.3.2 Dataflow Programming 
6.3.3 Data-driven Programming 

7 The Problem 
7.1 Scale of the Problem 
7.3 Precursor Solutions 

7.3.1 ASKAP 
7.3.2 LOFAR 
7.3.3 MWA 

8 How the SDP Solution Compares 
8.1 MPI 
8.2 OpenMP 
8.3 MapReduce 
8.4 Dataflow Approach 
8.5 Concluding Discussion 

 
 
 

2 List of Figures 

 

3 List of Tables 

 
  

Document No: XXX Unrestricted 
Revision:                                                                                                                     Author: 
XXXx 
Release Date: YYYY-MM-DD  Page 3 of 13 



 
 

4 Introduction 

 
The action MC1-133 in the PDR Report [AD1] reads as follows: 
 
“SDP is requested to produce a brief comparative study of dataflow versus the obvious 
alternatives and to have this material inserted in the next revision of the PDR data pack.” 

 
 
With the data rate being the dominant system parameter the SDP software architecture is 
focused on this very aspect. Consequently, it has a data layer which is a middleware supporting 
data-driven coarse-grained workflows and provides a clear-cut place where COTS and 
customized industry solutions can be incorporated. After briefly touching on the basics of the 
dataflow approach, it gives a synopsis of the scalability analysis of precursors systems 
comparable in scope to SDP and then discusses the merits of the chosen dataflow approach in 
comparison to prevalent high performance compute architectures. 
 
 

5 References 

 

5.1 Applicable Documents 

The following documents are applicable to the extent stated herein. In the event of conflict 
between the contents of the applicable documents and this document, ​the applicable 
documents​ shall take precedence. 
 
 

Reference Number Reference 

AD1 SDP Preliminary Design Review Panel Report rev. 1, 
SKA-TEL-SKO-00000169 

AD2 SDP Glossary, SKA-TEL-SDP-0000056 
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5.2 Reference Documents 

 
The following documents are referenced in this document. In the event of conflict between the 
contents of the referenced documents and this document, ​this document​ shall take 
precedence. 
 
 

Reference 
Number 

Reference 

RD01 PDR.01 SDP Architecture, SKA-TEL-SDP-0000013 

RD02 PDR.01.02 SDP Dataflow Environment, SKA-TEL-SDP-0000015 

RD03 PDR02.02 Data Sub-Element Design Report, 
SKA-TEL-SDP-0000023 

RD04 PDR02.02.01 Data Challenge Supplement, SKA-TEL-SDP-0000024 

RD05 SDP PDR Guidance, SKA-TEL-SDP-0000059 

RD06 PDR13, Risk Register,  SKA-TEL-SDP-0000006 

RD07 PDR14.01, Prototyping Plan, SKA-TEL-SDP-0000054 

RD08 ASKAPsoft Overview and Thoughts on Scaling, 
SKA-TEL-SDP-MEMO-009 

RD09 LOFAR Software overview and scaling, SKA-TEL-SDP-MEMO-010 

RD10 LMC Study: Going from MWA to SKA, SKA-TEL-SDP-MEMO-011 

RD11 MPI: A Message-Passing Interface Standard v3.0, 
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf 

RD12 MapReduce: Simplified Data Processing on Large Clusters, Jeffrey 
Dean and Sanjay Ghemawat 

RD13 The Fourth Paradigm, Data-Intensive Scientific Discovery, Microsoft 
Research, ISBN 978-0-98225442-0-4 

 
 

Document No: XXX Unrestricted 
Revision:                                                                                                                     Author: 
XXXx 
Release Date: YYYY-MM-DD  Page 5 of 13 



6 Existing Dataflow Architectures 

 
This section is a summary of prevalent dataflow approaches, memory models and programming 
paradigms. 
 

6.1 Dataflow Approaches 

 
A dataflow architecture means that the program execution is determined based on the 
availability of input arguments to the instructions (i.e. Processing Components). There is no 
static control flow at the level of programming code. 
 
A static dataflow approach means that the dataflow graph is a collection of activity templates for 
inputs, outputs and programs. It is simple and loops are executed sequentially. In contrast, with 
the dynamic approach each loop iteration or subprogram can be invoked in parallel. There are 
further models - but only one is mentioned here - the explicit token store approach which does 
efficient matching. 
 

6.2 Memory Models 

 
We consider the three basic memory models:  

1. distributed: each processor has its local memory space; comms via network 
2. shared: processors (e.g. CPUs on a board) sharing memory 
3. hybrid: interconnected nodes with shared memory 

 
For the sake of brevity the three models are introduced together with their de facto industry 
standard product, that is MPI, OpenMP and their combination. 
 

6.2.1 Distributed Memory: MPI Cluster 

 
Distributed memory refers to a multiple-processor system in which each processor has its own 
private memory and computations operate on local data. Other data need to be communicated 
from remote processors. 
 
MPI is a portable communication protocol [RD11] with defined language bindings in Fortran and 
C and implementations in several other programming languages and from various vendors. MPI 
provides communication and synchronisation between multiple processes. Typically, a job 
scheduler (e.g. SLURM) is employed which in turn uses MPI to start a single process on each 
allocated CPU core at time. It supports several logical process topologies and collective 
communication (broadcast, scatter, gather, etc.). 
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6.2.2 Shared Memory: OpenMP 

 
Shared memory is a multiprocessing design allowing several processors global memory access. 
It can be implemented in hardware and software (inter-process communication). OpenMP is a 
de facto software standard for parallel programming on shared memory systems and comes in 
the form of libraries for various platforms and requires compiler support. Application code 
includes compiler directives to parallelize algorithms. 
 

6.2.3 Hybrid Architectures 

 

MPI and OpenMP can be used in combination to support hybrids consisting of interconnected 
shared memory systems.  Some hardware architectures include accelerators such as GPUs 
which come with their own programming interface (e.g. CUDA). Exploiting the potential of hybrid 
hardware and software architectures adds considerable complexity to application code. 
 

6.3 Programming Paradigms 

 

6.3.1 MapReduce 

 
MapReduce [RD12] is a programming paradigm for processing large data sets with a parallel, 
distributed algorithm on a cluster. MapReduce libraries exist in many programming languages 
including open source implementations. MapReduce is the processing part of Hadoop (the other 
part being storage). 
 
In a nutshell, the idea is to organize data in {key​1​, value​1​} pairs and then to sort and group (i.e. 
partition) the tuples such that each partition can be processed independent of each other and 
therefore in parallel. Following this ​Map() ​function the data are processed and a result set 
consisting of  {key​2​, value​2​} tuples is generated on each compute node. The ​Reduce()​ function 
aggregates the result sets. ​Map()​ and ​Reduce()​ functions are user provided. In short: 
 

ap(k , ) ist(k , )m 1 v1 → l 2 v2  
educe(k , ist(v )) ist(v )r 2 l 2 → l 2  

 

6.3.2 Dataflow Programming 
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Dataflow programming is a paradigm that models a program as a directed graph (i.e. Physical 
Deployment Graph provided by LMC) of the data flowing between operations. [RD02] gives a 
detailed introduction plus references and discusses the potential of domain specific languages. 
 

6.3.3 Data-driven Programming 

 
Data-driven programming is a paradigm in which the code describes the data to be matched as 
well as the required processing. This is very similar to event-driven programming. (The SDP 
data layer triggers actions when a datum changes state.) 
 

 

7 The Problem 

 
SDPCMT-428: ​“Define the scale of the problem faced in SDP and the (without question) need 
for scalability in the implementation. The document should then comment on the scalability of 
the existing solutions and explain how (for example the frequency of data throughput) this has 
led to SDP pursuing a data parallel approach (i.e. it should record the steps undertaken).” 
 
 

7.1 Scale of the Problem 

 
The fundamental challenge of the SDP is the data rate from CSP. The raw visibility data 
(excluding metadata) arrive at a rate of 7.3 TByte/s for SKA1-low, 3.3 TByte/s for SKA1-mid and 
4.6 TByte/s for SKA1-survey [RD05]. These numbers are not cast in stone and the re-baselining 
has already changed them. For two reasons it has no bearing on this document though: Firstly, 
the PDR considers the configuration prior to rebaselining. Secondly, and more importantly, the 
software architecture was done with the aim of scalability to the full SKA, essentially leaving the 
timing and phasing of its implementation open. 
 
[RD01] estimates that the dataflow system needs to cope with 500 million tasks when assuming 
an average chunk size of 10 GB and 50 stages for processing a dataset of 100 PB. This 
corresponds to about 50000 dataflow actions/s. 
 
The data layer has to support two fundamentally different scenarios. For one, let’s label it the 
imaging pipeline case, there is a frequency partitioned parallel workflow with some challenges to 
minimize re-ordering and aggregations along the processing flow. And then there is, let’s call it 
the transient pipeline case, which requires a low latency streaming workflow, albeit with a much 
smaller data rate. The architecture embraces both cases, whereby the imaging pipeline is 
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clearly the main design driver and the requirement for the transient pipeline came known only a 
couple of months ago. 
 

7.2 Tackling  the Problem 
 
The architectural approach outlined in the PDR Executive Summary, p. 6  [RD05] is the result of 
an intense collaborative effort of the SDP architecture group involving all task leaders with 
design responsibility for operational software elements and the SDP management team.  
 
Technical documentation of (at least) the following projects was considered during the design 
process: ALMA, ASKAP, LOFAR, LSST, LHC, MegaPipe, MWA, Pan-STARRS and Sloan 
(more in section 7.3). A number of potential bottlenecks such as global file systems and limited 
compute efficiency were identified and quantified [RDnn].  
 
The architectural principles described in the system architecture  [RD01] formed the basis for 
the subelement design reports. Risk items were identified [RD06] and the goals in the 
Prototyping Plan [RD07] (e.g. 5.5 Data Flow Management System) were set. 
 

7.3 Precursor Solutions 

 
For the precursors ASKAP, LOFAR, MWA a scalability analysis of their respective SDP 
equivalents was performed and documented in memos [RD08-RD10] as part of the rebaselining 
input, milestone M7. Here is a synopsis. 
  

7.3.1 ASKAP 

 
[RD08] describes the experience on scaling the MPI based ASKAPsoft Central Processor. In 
short: 
 
ASKAPsoft uses an MPI-everywhere model for parallelism. Due to third-party libraries such as 
casacore and wcslib not being thread-safe shared-memory parallelism cannot be fully exploited. 
Furthermore, using OpenMP for shared memory parallelism scales very much sub-linear and 
plateaues at only a few cores due to the synchronisation overhead. For the same reason an 
MPI trial implementation of the deconvolution step does not scale. 
 
Visibilities are stored on a single global Lustre filesystem leading to the usual benefit of 
simplified management at the cost of creating a bottleneck. Visibility I/O is limited by a 
combination of the Lustre metadata server being a bottleneck, inability to align Measurement 
Set tile I/O to Lustre stripes, CASA table caching behavior and lack of parallel MPI I/O. 
 

Document No: XXX Unrestricted 
Revision:                                                                                                                     Author: 
XXXx 
Release Date: YYYY-MM-DD  Page 9 of 13 



A newly developed prototype parallel/MPI-IO FITS writer allows all MPI processes to write to a 
single file in parallel, thereby working around the CASA image aggregation bottleneck. 
 

7.3.2 LOFAR 

 
The scaling analysis of the CEP component of the LOFAR software system is described in 
[RD09]. Similar to SDP it performs the processing downstream of the correlator. It achieves 
parallelisation by subband partitioning. OpenMP is used to distribute the load to available cores 
on a single node thereby balancing varying processing times of individual data chunks. 
 
The lack of thread-safety  limits scalability of some functions, for instance, continuum imaging 1

with the FFTW library. Other current system limitations include shared file access on head 
nodes and sensitivity to load balancing and (central) master logging. 
 

7.3.3 MWA 

 
[RD10] discusses MWA and is focused on LMC scalability because the processing starting from 
raw visibilities (400 MB/s) happens off-site. The current system is centralized and can cope 
without a comprehensive message passing middleware layer to coordinate distributed/parallel 
tasks. Centrally collecting, reordering and processing telemetry happens at a cadence of 1 s 
and doesn’t scale well, especially for metadata produced from the transforming data stream: For 
example, the creation of cross-correlation power metric plots for all 8128 baselines based on 1 s 
data dumps (400 MB) goes with O(N​bl​

2​) and therefore is on an operator’s request only. The 
analysis states the need for a dedicated network for a decentralized LMC and its inherent timing 
constraints. 
 
 
 
 
 

8 How the SDP Solution Compares 

 
Increasing compute intensity in scientific computing and a scale-out architecture as a solution 
are not only Gray’s first and second law [RD13] but at the heart of the SDP architecture. The 
term CyberBrick coined in that context is analog to the Compute Island with its local storage 
space. The third law hardly needs any mentioning, it is the mantra of bringing computation to 
the data and to concentrate on data locality. 

1 Update 05/2015: Casacore is fully thread-safe w.r.t. the statics being used. In general, access to the 
objects (e.g. an Array object) is not thread-safe because of the penalty involved. Where needed the 
LOFAR code handles the locking. 
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Before concluding with a short discussion there are some textbook arguments about the merits 
of the various approaches. The bullet items inlcude pros (+), cons (-) and it depends (~) for each 
of MPI, OpenMP, MapReduce and Dataflow Approach: 
 

8.1 MPI 

 

+ runs on either shared or distributed memory architectures 
+ can be used on a wider range of problems than OpenMP 
+ each process has its own local variables 
+ distributed memory computers are less expensive than large shared memory computers 
- no fault tolerance 
- when combined with shared file system not compatible with architecture 
- no data placement awareness 
- demanding programming changes to go from serial to parallel version 
- can be harder to debug 
- performance is limited by the communication network between the nodes 
 

8.2 OpenMP 

 

+ easier to program and debug than MPI 
+ incremental, gradual parallelization possible 
+ program is still functional in serial code 
+ serial code statements can usually stay unmodified 
- code easier to read and therefore maintain 
- requires shared memory computers 
- requires compiler support 
- mostly used for loop parallelization 
 
 

8.3 MapReduce 

(with Hadoop/HDFS) 
 
+ fault tolerance 
+ highly scalable 
- high latency; batch system 
- single fixed dataflow; single input/output; not suited for loops 
- not suitable for stream processing 
- not suitable for in-memory processing 
- not suitable for all algorithms 
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- I/O for complex data structures requires system tweaking 
- some native optimizations not available through Java 
 

8.4 Dataflow Approach 

 

+ control of data locality 
+ exploitation of data parallelism 
+ works with commodity hardware 
+ no global file system needed just a GUID server like CEPH 
+ control flow of sub-graph not limited by a master node 
+ load-balancing 
~ fault tolerance: depends on underlying storage manager 
- idle times when waiting for matching data 
 

8.5 Concluding Discussion 

 
MPI communication constitutes a serious performance bottleneck (see example of ASKAPSoft). 
Shared systems and hybrid systems add considerable software complexity. In the timescale of 
SKA1 hardware solutions (such as SGI UV2000) combined with programming languages like 
UPC may actually scale up to Compute Island scale and make for a viable competitor to clusters 
of commodity hardware. MapReduce based systems require additional layers of software 
(HADOOP/HDFS, Apache Spark etc.) to offset some of their inherent drawbacks. 
Fault-tolerance comes at the price of a lot of hardware redundancy, which is problematic within 
the given limited power budget. 
 
In contrast to all of above, the SDP architecture prescribes a system that maximises throughput 
by optimising data locality on a distributed system. The proposed data layer is not comprised of 
a single system in terms of an existing product, but requires the combination of existing 
products. This literally forced the architecture group to look for alternatives to more classic 
approaches (most notably MPI-everywhere) which usually have no explicit data layer. For 
illustrative purposes only and without actually suggesting a concrete implementation, this could 
involve a hierarchical storage management system, a data management tool optimising data 
placement, a software defined network implementing a subscriber pattern, and a management 
DB plus GUID server providing consistent DataObject [AD2] journalling.  
 
MapReduce requires serious restructuring of code. The dataflow system, on the other hand, 
treats Processing Components (i.e. Linux Containers) as black boxes whereby strongly typed 
inputs and outputs are defined once when building a logical graph which in turn is derived from 
a processing pipeline recipe for a given instrument configuration. 
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The data layer glues together domain specific processing recipes - that is the orchestration of 
Processing Components expressed as a graph - and employs (commercial) middleware 
solutions to deal with consistency and availability. Especially when combined with Compute 
Islands built from commodity hardware there is, as a side-effect, minimised vendor lock-in, 
because the data layer slices through deep stacks of proprietary inflexible (or costly to change) 
management frameworks.  
 
Again, given that no known data management system copes with the performance requirements 
(at least not within perceivable cost constraints) there is no alternative than to divert to a 
dataflow approach that allows tailoring to SDP specific combination of requirements. 
 
Exposing the SDP design hotspot as a design component, namely the data layer, has drawn a 
lot of attention and sometimes criticism. This should be seen as an opportunity to focus on the 
challenge. Prototyping will continue to help improve the understanding of how to maximise 
throughput with moderate changes to domain-specific code. The associated risk of the dataflow 
approach is not a result of the architectural choice, but of the performance requirement and the 
ultimate user expectation on observatory capabilities. The dataflow choice gives the system the 
flexibility to incorporate and swap in and out third party components throughout the system life 
cycle and will allow to perform system integration and tuning at a much higher fidelity than with 
a deep proprietary software stack. We are convinced that the dataflow approach has currently 
the best potential for meeting the challenge of sustained data throughput. 
 
 
 

❉ 
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